La gestiòn de la deriva como problema fundamental del bayesianismo
Esta entrada no versa propiamente sobre estadística bayesiana (aunque también) sino sobre el bayesianismo entendido —exageradamente, a veces— como la columna vertebral de la epistemología. De acuerdo con tal visión, solo podemos conocer las cosas —concedido: no todas— con cierto grado de certeza y tanto este conocimiento como la incertidumbre van adaptándose a la información adicional que llega de acuerdo con un criterio: la regla de Bayes.
Pensemos en el ejemplo clásico del lanzamiento de monedas. No sabemos nada a priori sobre la probabilidad $p$ de cara, por lo que nuestro conocimiento sobre el asunto puede modelarse con una beta $B(1,1)$, una distribución uniforme sobre el intervalo $[0,1]$. Conforme observamos lanzamientos, de ser racionales, iremos modificando esa distribución. Si al cabo de $n$ lanzamientos observamos $c$ caras y $n-c$ cruces, nuestro conocimiento sobre $p$ estará recogido en una $B(c+1, n-c+1)$. Esa distribución estará típicamente centrada alrededor del valor real de $p$ y tendrá una dispersión que decrecerá con $n$. (En otra versión, hay un primer conjunto de datos, se obtiene una posteriori y dicha posteriori se convierte en la priori de un análisis ulterior cuando se observa un conjunto de datos adicional).