Estadística

Cuidado con ChatGPT (advertencia núm. 232923423)

I. Cuando éramos críos e íbamos al colegio, todos hemos participado en conversaciones que discurrían más o menos así: — Quiero ver el programa X. — No puedes porque A, B y C. — Pero Fulanito lo ve todos los días. — No te fijes en lo que hace el más tonto; fíjate en lo que hace el más listo. Los primeros buscadores de internet eran catastróficos. Un día apareció uno nuevo, Google, con una filosofía de madre de los setenta: fijarse en lo que hacía el más listo, no el más tonto.

¿Y si calculamos la potencia de un test a posteriori?

Esta entrada continúa esta otra y describe un cambio realizado en la app para ilustrar qué ocurre —spoiler: nada bueno— cuando se calcula el poder de un test a posteriori, es decir, usando como estimaciones el efecto y su ruido los valores observados. Como comprobará quien use la herramienta, puede ocurrir casi cualquier cosa. Y, en particular, para potencias de partida pequeña, la estimación de la potencia a posteriori es una enorme sobreestimación de la real cuando la prueba es significativa.

Si tus datos son minúsculos y están hipersesgados, no los tires a la basura: aquí te contamos cómo reciclarlos.

I. Supongamos que X es una población determinada. A alguien le interesa estudiar cierto aspecto de ella. Lo que procede es: Muestrear X adecuadamente. Medir los parámetros de interés en la muestra. Aplicar técnicas de inferencia estadística. Redactar las conclusiones pertinentes. II. Supongamos que a alguien le interesa aprender sobre cierto aspecto de una población X. Lo que tiene que hacer es buscar publicaciones en que lo hayan estudiado como se indica en I.

¿Qué catástrofes cabe esperar de las pruebas estadísticas con poca potencia?

Desde cierto punto de vista, lo ideal a la hora de realizar una prueba estadística es que: El efecto sea grande. La variación de los sujetos sea pequeña. El tamaño de la muestra sea generoso. Pero solo bajo cierto punto de vista: todas las pruebas estadísticas en que pasa eso ya se han hecho antes. Llevamos cientos de años haciendo ciencia y billones de euros invertidos en ella. Lo que nos enseñan las pruebas estadísticas con un SNR (signal to noise ratio) y posibilidad de extraer nuevas observaciones a bajo coste, ya lo sabemos desde hace tiempo.

Más sobre extensiones (bayesianas, pero no necesariamente) del t-test

En Improving Research Through Safer Learning from Data, Frank Harrell, junto con otros consejos muy provechosos para aquellos investigadores que tengan un compromiso más serio con la rectitud metodológica que con el desarrollo de su carrera profesional, menciona a modo de ejemplo una solución propuesta por Box y Tiao (en el tercer capítulo de esto) al problema del t-test en el caso de que no rija la hipótesis de normalidad. Más propiamente, en casos en los que se sospecha que la desviación con respecto a la normalidad lo es en términos de la curtosis (y no la asimetría).

De cómo la estadística bayesiana ha descompuesto la solución a un problema que la estadística clásica tenía plusquamsolucionado

I. Voy a plantear el problema del día en el contexto más simple y familiar para la mayoría que se me ocurre: una ANOVA para comparar dos tratamientos. Se puede representar de la forma $$y_i \sim \alpha + \beta_{T(i)} + \epsilon$$ donde $T(i)$ es el tratamiento, $A$ o $B$, que recibe el sujeto $i$. Parecería que el modelo estuviese sugiriendo determinar tres parámetros, $\alpha$, $\beta_A$ y $\beta_B$, correspondientes al efecto sin tratamiento y los efectos adicionales de los tratamientos $A$ y $B$.

Tutorial de numpyro (I): modelos probabilísticos

I. Las distintas disciplinas estudian aspectos diferentes de la realidad. Para ello crean modelos. Un modelo es una representación teórica y simplificada de un fenómeno real. Por un lado, el territorio; por el otro, el mapa. Los físicos modelan cómo oscila un péndulo y se permiten obviar cosas como el rozamiento del aire. Los economistas, la evolución del PIB o la inflación. Los biólogos, la absorción de una determinada sustancia por un tejido.

Coeficientes "no identificables": un ejemplo y sus consecuencias

Hoy voy a abundar sobre el modelo 3PL que ya traté el otro día. En particular voy a contrastar críticamente varios modelos alternativos sobre los mismos datos. I. El modelo que implementé (aquí) puede describirse así: $$r_{ij} \sim \text{Bernoulli}(p_{ij})$$ $$p_{ij} = p(a_i, d_j, …)$$ $$a_i \sim N(0, 1)$$ $$d_j \sim N(0, 1)$$ $$\dots$$ donde $$p = p(a, d, \delta, g) = g + \frac{1 - g}{1 + \exp(-\delta(a- d))}$$ y $a_i$ y $d_j$ son la habilidad del alumno $i$ y la dificultad de la pregunta $j$ respectivamente.

El modelo 3PL, ajustado con numpyro

Tenía ganas de meterle mano al modelo 3PL de la teoría de respuesta al ítem. Había un par de motivos para no hacerlo: que viene del mundo de la sicometría, que es un rollo macabeo, y que sirve —en primera aproximación— para evaluar evaluaciones (preguntas de examen, vamos), un asunto muy alejado de mis intereses. Pero acabaron pesando más: Que se trata de un modelo generativo en el que los coeficientes tienen una función —y por tanto, interpretación— determinada y prefijada.

La paradoja de Lord, de nuevo

Escribí sobre la paradoja de Lord en 2013 y luego otra vez, tangencialmente, en 2020. Hace poco releí el artículo de Pearl sobre el tema y comoquiera que su visión sobre el asunto es muy distinta de la mía, voy a tratar de desarrollarla. Aunque supongo que es generalizable, la llamada paradoja de Lord se formuló inicialmente al estudiar y comparar datos antes/después. En su descripción original de mediados de los 60, había niños y niñas a los que se había pesado en junio y en septiembre.

Paralelismos entre textos vía embeddings: el caso, por poner uno, de los evangelios de Mateo y Marcos

Hace un tiempo tuve que leerlo todo sobre cierto tema. Entre otras cosas, cinco libros bastante parecidos entre sí. Era una continua sensación de déjà vu: el capitulo 5 de uno de ellos era casi como el tres de otro, etc. Pensé que podría ser útil —y hacerme perder menos tiempo— poder observar el solapamiento en bloques —sígase leyendo para entender mejor el significado de lo que pretendía—. En esta entrada voy a mostrar el resultado de mis ensayos sobre unos textos distintos.

Si Pearson hubiese tenido un ordenador como el mío...

… muchas cosas serían muy distintas hoy en día. Hoy quiero elaborar sobre su artículo de 1900 X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling famoso por nada menos que introducir el concepto de p-valor y el el uso de la $\chi^2$ para medir la bondad de ajuste.