Charlas en Alicante, julio de 2019

Este mes de julio, entre los días 10 y 12, participaré como ponente en dos charlas encuadradas en los Cursos de Verano de la Universidad de Alicante “Rafael Altamira” y en las que se discutirá el papel de los matemáticos en la sociedad (aunque parece que el énfasis recae en el aspecto económico y empresarial). Según los organizadores:

El curso pretende ser un lugar de encuentro, y de intercambio de experiencias, para dar visibilidad al trabajo realizado por los matemáticos en el sector empresarial y entender la razón por la cual este colectivo se suele mover cómodamente por los nuevos sectores profesionales.

Análisis de la discontinuidad + polinomios de grado alto = ...

Una técnica que, al parecer, es muy del gusto de los economistas es lo del análisis de la discontinuidad. Es como todo lo que tiene que ver con causalImpact pero usando técnicas setenteras (regresiones independientes a ambos lados del punto de corte).

Si a eso le sumas que las regresiones pueden ser polinómicas con polinomios de alto grado… pasan dos cosas:

  • Tienes una probabilidad alta de obtener un resultado significativo, i.e., publicable.
  • Pero que se deba solo al ruido producido por el método (corte discreto, inestabilidad polinómica, etc.).

Es decir, la habitual chocolatada que algunos llaman ciencia (cierto, algunos dirán que mala ciencia, pero que, ¡ah!, nos cobran al mismo precio que la buena).

Un recíproco para el teorema de Bernstein–von Mises

Aquí se describe una suerte de recíproco para el teorema de Bernstein–von Mises. Aquí se resume de esta manera:

El famoso teorema del acuerdo de Aumann demuestra que dos agentes racionales con las mismas prioris sobre un fenómeno pero que observan datos distintos llegarán a un consenso sobre las posterioris después de una charla civilizada mientras se toman té.

En resumen:

  • B-vM: frente a la misma evidencia, observadores con prioris distintas tienen posteriores similares.
  • Aumann: frente a evidencias disímiles, observadores con las mismas prioris pueden acordar posterioris similares.

¡Eh! ¡Atención a la media geométrica!

El insomnio y la serendipia me han hecho transitar por unas líneas en las que se lee (con mi traducción):

Es razonable usar la media aritmética, que es de unas 150 personas por milla cuadrada. Sin embargo, el método adecuado es el de la media geométrica:

$$ \text{best guess} = \sqrt{\text{lower endpoint} \times \text{upper endpoint}}.$$

La media geométrica da el punto medio de los extremos inferior y superior en la escala logarítmica, que es la que opera en nuestro hardware mental. La geométrica es la media correcta para combinar cantidades producidas por nuestro hardware mental.

A falta de escenarios, tenemos instituciones con atribuciones solapadas

Si yo fuera rey, expropiaría el edificio sito en el número 212 de la Castellana de Madrid, derruiría lo existente y construiría uno imagen especular de

que es el que queda justo enfrente y que contiene eso que conocemos como Instituto Nacional de Estadística. Lo llamaría, por mantener la especularidad, ENI y lo poblaría de estadísticos con una misión:

  • No hablar ni relacionarse bajo ningún concepto con los de enfrente.
  • Replicar sus estadísticas, proyecciones, encuestas y censos en el mismo plazo y forma pero independientemente de ellos.

Así tendríamos dos censos, dos EPAs, dos brechas salariales, dos de cada cosa. Y una mínima estimación de la varianza de las cosas y de su error (muestral y demás).

Elecciones e índice (supernaíf) de Shapley

Aprovechando que el paquete GameTheoryAllocation ha emergido de mi FIFO de pendientes a los pocos días de conocerse los resultados de las [adjetivo superlativizado omitidísimo] elecciones generales, voy a calcular de la manera más naíf que se me ocurre el índice de Shapley de los distintos partidos. Que es:

Al menos, de acuerdo con el siguiente código:

library(GameTheoryAllocation)

partidos <- c(123, 66, 57, 35, 24, 15, 7, 7,
              6, 4, 2, 2, 1, 1)
names(partidos) <- c("psoe", "pp", "cs", "iu",
                      "vox", "erc", "epc", "ciu",
                      "pnv", "hb", "cc", "na",
                      "compr", "prc")

coaliciones <- coalitions(length(partidos))
tmp <- coaliciones$Binary

profit <- tmp %*% partidos
profit <- 1 * (profit > 175)

res <- Shapley_value(profit, game = "profit")

res <- as.vector(res)
names(res) <- names(partidos)
res <- rev(res)

dotchart(res, labels = names(res),
          main = "naive shapley index \n elecciones 2019")

Lo del índice de Shapley, de ignorarlo, lo tendréis que consultar por vuestra cuenta. Al menos, para saber por qué no debería usarse tan frecuentemente (en problemas de atribución, entre otros).

Elecciones, mapas... y mi favorito

De entre lo bueno que pudan haber traído las últimas elecciones generales (las españolas de abril de 2019, para quien requiera mayor precisión) puede contarse una pequeña revolución en la cartografía electoral.

Debemos agradecérselo al equipo de Kiko Llaneras en El País, que nos ha regalado esto. Prueba de que las cosas han cambiado es que ha sido replicado en otros sitios, como este.

[Nota: no sé si estoy cometiendo injusticias en el párrafo anterior por omisión o confusión en las prelaciones; si alguien dispone de más o mejor información sobre la intrahistoria de esas publicaciones, que me avise.]

Yo no elaboro programas electorales pero sí propuestas de proyectos

Yo elaboro propuestas de proyectos. Sé lo que pasa cuando los ganas (y también cuando no). Así que pienso en un proyecto

  • de cuatro años de duración,
  • compartido con otras empresas de intereses variopintos y sujeto a negociaciones con ellas,
  • con una cuota de responsabilidad desconocida a priori y
  • en un contexto cambiante y sujeto a circunstancias extrañas y fuera de control (y si no sabéis a qué me refiero, un nombre: Zapatero)

y me da la risa pensar que alguien pueda tomarse en serio algo llamado programa (electoral, por si alguien no se había percatado de a lo que me refiero).

ML y estadística, ¿cosas distintas?

Recomiendo, sin comentarlo, un artículo muy desasosegador en el que se leen cosas como:

At this point, I had taken only an introductory statistics class that was a required general elective, and then promptly forgotten most of it. Needless to say, my statistical skills were not very strong. Yet, I was able to read and understand a paper on a state-of-the-art generative machine learning model, implement it from scratch, and generate quite convincing fake images of non-existent individuals by training it on the MS Celebs dataset.