Posts

Enlaces parasociológicos

Tenía tan bien guardados en el disco duro una serie de enlaces de interés parasociológico que no había forma humana de dar con ellos.

Para que no me vuelva a pasar y por su potencial interés para otros, los cuelgo aquí.

El primero de ellos (que no sé por qué lo guardé) son las diapositivas de una charla acerca de cómo transformar porcentajes de votos en escaños en España.

Los otros tres se refieren a la metodología que utiliza la gente de electionforecast.co.uk:

ABC (II)

Más sobre lo de ayer. O más bien, una justificación por analogía.

Con monedas.

Tiras una moneda 100 veces y obtienes 60 caras. Tienes una priori $latex B(a,b)$ (beta). Tomas una muestra de valores $latex p_i$ con esa distribución y para cada una de ellas repites el experimento, es decir, obtienes lo que en R se expresaría de la forma

rbinom(1, 100, p[i])

Si te quedas los valores $p_i$ tales que esa simulación es 60, enhorabuena, tienes una muestra de la distribución a posteriori.

ABC (I)

Que quiere decir approximate Bayesian computation. Es un truco para pobres y desafortunados que no pueden quitarle la A a BC y usar directamente cosas como Stan o similares. El que no quiera prioris, además, puede usar el ABC para estimar la forma de la verosimilitud alrededor de una estimación puntual.

Por supuesto, el objetivo es obtener una estimación de la posteriori para poder medir la incertidumbre de parámetros, etc. La idea es que se dispone de unos datos, $latex X$ y un mecanismo de generación de datos $latex X^\prime = f(\theta)$, donde $latex \theta$ es un vector de parámetros.

Más sobre las proyecciones de población del INE

Bastante he hablado de las proyecciones de población del INE (p.e., aquí o aquí). Insisto porque el gráfico que aparece en la segunda página de la nota de prensa de las últimas, a saber,

se parece muchísimo a un gráfico que garabateé en el Bar Chicago de Zúrich (el peor garito de la peor calle de una de las mejores ciudades del mundo), con demasiadas cervezas en el cuerpo y mientras nos reíamos hasta de las bombillas. Era algo así como

Sartenes e ideologías

Si alguien me hubiese preguntado hace 15 años qué era para mí una sartén, le habría contestado: “un utensilio para hacer paellas”. Efectivamente, hace 15 años yo hacía unas paellas (y muy ricas, además) en una sartén. Y todos tenéis en mente la pregunta que debiera haberme realizado mi interlocutor.

Dejemos la gastronomía.

Hace unos días estaba viendo una entrevista en Youtube. El entrevistado se había declarado seguidor y partidario de una ideología (a la que me referiré como X porque no viene al caso identificarla) y el otro le preguntó: ¿y qué es para ti X? Y dijo algo parecido a lo de mi sartén: una herramienta para entender e interpretar el mundo. ¡Y nadie, nadie, nadie le hizo la pregunta obligatoria! Es decir: ¿y te parece X la herramienta más adecuada para entender e interpretar el mundo?

Dos ejercicios (propuestos) sobre "embeddings"

Se me han ocurrido en los dos últimos días un par de ejercicios sobre embeddings que no voy a hacer. Pero tal vez alguien con una agenda más despejada que la mía se anime. Uno es más bien tonto; el otro es más serio.

El primero consiste en tomar las provincias, los códigos postales o las secciones censales y crear textos que sean, para cada una de ellas, las colindantes. Luego, construir un embedding de dimensión 2. Objetivo: probar o refutar que el embedding es una transformación de las coordenadas geográficas de las unidades geográficas. Bonus: ver qué pasa con embeddings de dimensión superior.

Un resultado probabilístico contraintuitivo (y II)

Va sobre lo de ayer. Hay una demostración de ese resultado contraintutivo aquí. Hay una referencia aquí. Existen discusiones sobre si este resultado se debe a Feller; si no lo es, bien pudiera haberlo sido; la verdad, es muy como de él.

Pero una cosa es la demostración y otra muy distinta, descontraintuitivizar el resultado. Para ello, escuchemos la siguiente conversación entre dos sujetos:

A: No has visto el cierre de la bolsa hoy, ¿verdad?

Un resultado probabilístico contraintuitivo (parte I)

A elige dos números con una distribución de probabilidad cualquiera,

generador <- function() rlnorm(2, 3, 4)

y los guarda ocultos. A B le deja ver uno al azar (sin pérdida de generalidad, el primero). Y B tiene que decidir si el que ve es el más alto de los dos (en cuyo caso, gana un premio, etc.). Veamos a B actuar de manera naive:

estrategia.naive <- function(observed) {
  sample(1:2, 1)
}

Dejemos a A y B jugar repetidamente a este juego: