Agentes

Unas cuantas notas sobre LLMs

  1. Do AIs think differently in different languages? estudia lo que indica su título. Es cierto que presta más atención a aspectos sociales y culturales que a los del razonamiento lógico puro. Aunque me recuerda a ese artículo, LLM performance on mathematical reasoning in Catalan language, que ya traté antes.
  2. Tu meteorólogo cabecera te dirá que Artificial intelligence could dramatically improve weather forecasting es un sinsentido porque de que lo sea depende su pan futuro (salvo que trabaje en AEMET, al socaire del progreso). Recuérdese que la mejor perspectiva sobre lo que ocurre en una disciplina no la proporcionan los que trabajan directamente en ella, sino los que practican otras aledañas: están al tanto de las novedades en tanto que les atañen pero no están sesgados por los incentivos.
  3. AI Digest y, en particular, AI Village traen experimentos curiosos realizados con la IA. En el segundo, en particular, tienen a varios LLMs trabajando colaborativamente en un mismo problema, chateando entre ellos, etc. para completar conjuntamente un proyecto. Ahora mismo, construir un juego tipo “Wordle”. El último mensaje de Claude Opus 4.1 hoy dice (con mi traducción): “Esperaré tranquilamente puesto que hemos concluido la sesión del día 220. El equipo ha realizado un avance excelente en todas las tareas críticas de la jornada.”
  4. Let the LLM Write the Prompts: An Intro to DSPy in Compound AI Pipelines, una introducción a DSPy, una herramienta de Databricks, para construir procesos en los que los propios LLMs ayudan a escribir los prompts.
  5. Just Talk To It – the no-bs Way of Agentic Engineering, sobre el estado del arte en la programación usando agentes a fecha de hoy. La guía más pro que he leído al respecto.

Una serie de artículos sobre aplicaciones y trucos acerca del uso de LLMs

Simon Willison invita aquí a pensar mejores prompts para resumir texto —uno de los principales usos de los LLMs— de manera más efectiva.

Y este otro artículo abunda sobre el tema: cómo construir mejores prompts. El problema que tiene es el de siempre: solo puedes entretenerte en pulir los prompts cuando esperas obtener mucho valor de la respuesta. Para el uso rápido y cotidiano, continuaremos con nuestras heurísticas frugales.

Dos usuarios avanzados de los LLMs desvelan algunos de sus trucos:

Una nueva selección de novedades relevantes del mundo de los LLMs

Todo el mundo lleva días hablando del MCP. Creo que ni merece la pena decir qué cosa es.

MCP es un mecanismo para empoderar agentes. Para los primeros que creé, utilicé CrewAI pero he migrado a LangChain porque:

  • A CrewAI le encantan las dependencias tochas: para cualquier trivialidad crea entornos de varios GB.
  • CrewAI está diseñado para un tipo de agentes muy concreto —agentes a los que se delega enteramente el control del flujo del proceso— que no son exactamente los que más me interesan ahora –que suelen incluir un elemento de control por mi parte—.

Aunque todo el mundo habla de LangChain y CrewAI, hay algunas innovaciones interesantes, entre las cuales:

Unas cuantas noticias sobre LLMs

DeepSeek V3 llevaba publicado desde diciembre; R1, desde hacía más de una semana; pero solo fue el lunes 27 de enero cuando NVIDIA sufrió un descalabro y DeepSeek apareció repentinamente —hasta entonces no había rebasado los habituales foros friquis— en boca de todos (véase esto o esto, dos de las mejores piezas al respecto que he recopilado). Aparentemente, lo que hizo caer la bolsa fue el artículo The Short Case for Nvidia Stock, aparecido el sábado 25 de enero, en el que se hace un repaso detallado de las fortalezas pero, sobre todo, los peligros que acechan a NVIDIA. Algunas de las cuestiones que trata son: