Todos los SE son iguales, pero algunos son más iguales que otros
SE significa arriba_squared errors_, pero lo que aplica a cualquier otro tipo de error, incluso los que son más apropiados que los cuadráticos. El problema de los SE es que se tienden a considerar iguales y por eso se los promedia en engendros como el RMSE y similares. Pero incluso entre los SE hay jerarquías, como evidencia la siguiente historia.
Con lo del covid se pusieron en marcha muchas iniciativas. Una de ellas fue la del COVID-19 Forecast Hub. En ese hub se consolidaron los resultados de muchos modelos relacionados con el covid (relacionados con casos, hospitalizaciones y defunciones) desarrollados por la créme de la créme: MIT, Columbia, Harvard, Google, etc. Todos, sobre el papel, tenían RMSE’s envidiables. Pero ninguno valía para gran cosa. Al final, se ha impuesto la cordura y la página que recogía los resultados de los modelos ha chapado con el siguiente cartelito: