Gamma

La (mejor) caracterización de la binomial negativa (en términos de la Poisson y la gamma)

Estamos acostumbrados a la caracterización habitual de la distribución binomial negativa como el aburrido número de fracasos en una serie de ensayos de Bernoulli hasta lograr $r$ éxitos. Esto, junto con un poco de matemáticas de primero de BUP —todo aquello de combinaciones, etc.— lleva a la expresión conocida de su función de probabilidad,

$$\binom{n + x - 1}{x} p^r (1 - p)^x.$$

Pero esta caracterización, muy útil para resolver problemas de probabilidad construidos artificialmente para demostrar que los alumnos han estudiado la lección con aprovechamiento, se queda muy corta a la hora de proporcionar intuiciones sobre cómo, cuándo y por qué utilizarla en el ámbito en el que es más útil: el análisis de los procesos puntuales.