Maxwell-Boltzmann

Otra forma de llegar a la distribución normal

¿Cómo llegamos a la distribución normal? Típicamente, por aplicación —implícita, explícita, rutinaria o litúrgica— del teorema central del límite: una variable aleatoria es normal porque la creemos consecuencia de pequeñas perturbaciones independientes.

Pero hay otra vía.

Supongamos que tenemos tres —o, para el caso, $n > 1$— variables aleatorias continuas independientes con la misma distribución. Su densidad, por tanto, puede factorizarse así:

$$f(x_1, x_2, x_3) = f(x_1) f(x_2) f(x_3).$$

Supongamos además que $f(x_1, x_2, x_3)$ depende solo de $x_1^2 + x_2^2 + x_3^2$, la distancia al origen. De otro modo, que