Momocalor

z-scores, p-scores y el problema de las áreas pequeñas

Uno de los problemas que encuentra uno al monitorizar series temporales en diversas escalas es la de encontrar una métrica de desviaciones de la normalidad (al menos en tanto que los sectores en los que trabajo no se pueblen de postmodernistas que comiencen a cuestionar qué es eso de la normalidad y a argumentar que si es un constructo tan injusto como inasequible) que cumpla una serie de requisitos:

  • El primero y fundamental, que detecte efectivamente desviaciones de la normalidad.
  • Que sea interpretable.
  • Que permita la comparación entre distintas series.

Estoy tentado a volver sobre el asunto de la mortalidad y de MOMO para ilustrarlo. Porque en proyectos de esa naturaleza hay que construir una métrica que nos diga si es igual de relevante (o de indicador de problemas subyacentes serios) un incremento de 20 defunciones en Madrid o de 2 en Teruel.

Recordatorio: no olvidéis restar los fallecimientos atribuibles al calor en la estimación del efecto de la "segunda ola"

La estimación de la mortalidad atribuible a la gripe estacional (que no, que no se hace consultando la causa de muerte que consignan los médicos medio al buen tuntún por motivos administrativos y que luego recoge el INE, como parece que dan a entender estos beneméritos verificadores para la confusión de quienes den su palabra por buena) tiene una complicación sustancial: ocurre simultánea y co-casualmente con el frío, que incrementa las defunciones por motivos otros. En términos estadísticos, es un problema de práctica colinealidad entre dos regresores cuyos coeficientes miden el impacto de la gripe y el frío respectivamente.

Un recordatorio: MOMOCalor está "up and running"

Por desgracia, MoMo ya no exige presentación. Pero con los termómetros acariciando los 40º no está mal recordar la existencia de MoMoCalor, su hermanito, que trata atribuir mortalidad a los excesos de temperaturas.

¿Por qué es particularmente importante MoMoCalor hoy? Recuérdese que MoMo estima, simplemente, desviaciones de mortalidad con respecto a la que sería la normal en una fecha determinada. Cuando hay una epidemia o una ola de calor, la mortalidad crece y MoMo lo detecta. Pero cuando hay una epidemia y una ola de calor simultáneas, MoMo es incapaz de atribuir muertos las causas anómalas subyacentes. Pero MoMoCalor sí.