Savage

Kant: probabilidad y apuestas

Hace tres años mencioné la definición de probabilidad que Savage inculcó en su prole:

My father, Leonard Jimmie Savage, was an early advocate of subjective probability. He encouraged me from a young age to think of the probability of an event as the amount I would pay for a gamble that would pay $100 if the event occurred.

Sam Savage, 2004 (fuente)

Pero hay (!por supuesto!) antecedentes. Kant, en su Crítica de la Razón Pura, escribe (con mi subrayado):

¿Cómo pensar en la probabilidad de un evento?

[Esta entrada lo es, además de por su propio mérito, en preparación de la que habrá de ocurrir mañana o pasado.]

Así:

My father, Leonard Jimmie Savage, was an early advocate of subjective probability. He encouraged me from a young age to think of the probability of an event as the amount I would pay for a gamble that would pay $100 if the event occurred.

Sam Savage, 2004 (fuente)

Cómo apostar si tienes que

Hace unos días recibí esto,

que es la rentabilidad de carteras de inversión (sospecho que no necesariamente reales) de usuarios de cierto portal que compiten por ver quién tiene más ojo en bolsa.

¿No os llama la atención esa rentabilidad >600%? ¿Cómo se puede alcanzar? ¿Es ese señor —a quien no conozco— un hacha de las inversiones?

Dos ideas me vienen a la cabeza. Una es esta que, pienso, no aplica. Y no lo hace porque, en particular, y como ya escribí, la apuesta de Kelly maximiza la mediana de las ganancias, pero ignora su varianza. Que, por lo que veremos luego, es el quid de la cuestión.

Sobre el libro "The flaw of averages"

Leí hace un tiempo The flaw of averages, un libro poco convencional que recomiendo a mis lectores. Su objetivo último es encomiable: conseguir que personas sin mayor preparación matemática o estadística pero obligadas a tomar decisiones frente a la incertidumbre apliquen el sentido común y entiendan claramente unos principios mínimos.

Para lograrlo, asume una postura tal vez anti-intelectualista, tal vez herética. Piensa el autor —¿con motivo?— que, a ciertas personas, conceptos tales como varianza, media, teorema central del límite o función de densidad les dificultan, más que facilitan, la comprensión de lo que la incertidumbre realmente es y de cómo puede afectarlos. ¡Cuánta gente se conforma con conocer la media (p.e., de una estimación)!