Sesgo

Cuando oigáis que los algoritmos discriminan, acordaos de esto que cuento hoy

Generalmente, cuando construyes uno de esos modelos para clasificar gente entre merecedores de una hipoteca o no; de un descuento o no; de… vamos, lo que hacen cientos de científicos de datos a diario, se utilizan dos tipos de fuentes de datos: individuales y grupales.

La información grupal es la que se atribuye a un individuo por el hecho de pertenecer a un sexo, a un grupo de edad, a un código postal, etc. Típicamente tiene una estructura seccional (invariante en el tiempo).

¿Soy parte del concilábulo heteropatriarcal?

En una de esas comidas navideñas tuve que asistir pasivamente a una conversación en la que se dibujaba una peculiar realidad alternativa: existiría algo así como un conciliábulo (el Márketing) con capacidad de memoria, entendimiento y voluntad propias e interés por implementar una particular agenda de corte heteropatriarcal. Producto de la cual, por ejemplo, las afeitadoras de color rosa para mujeres vendrían a resultar más caras que las azules para hombres, etc. El Márketing sería un grupito de señores fumando puros, jugando al mus que, entre partida y partida, deciden el color, empaquetado, estampado, forma y precio de cada producto imaginable vendido en cualquier tienda del reino; el descuento que se puede aplicar a cada cual según su raza, sexo/orientación sexual, religión, enfermedad crónica y afiliación sindical. Con un solo objetivo: perjudicar a los/as consabidos/as.

Mortalidad y tramos de edad gordotes

Cuando se estudia la mortalidad, hay que tener cuidado con los tramos de edad considerados. Véase, por ejemplo, esto, que se resume en un “tenemos que ajustar el incremento de la edad media en la categoría de las personas en el rango de edad comprendido entre los 45 y los 54 años [para evitar meter la pata mucho]”.

Sí, incluso trabajando con rangos de edad tan estrechos, hay problemas de heterogeneidad que pueden dar lugar a resultados espurios.

Predecir a los predictores por incordiar

Sirve esta entrada para hacer saber lo fundamental del trabajo de fin de master (TFM en lo que sigue) de Susana Huedo (que busca trabajo y es una chica muy sabida, aplicada y espabilada) en el CIFF. Los TFM que propongo y acabo supervisando jamás tienen vocación de criogénesis anaquélica. A Susana le sugerí un tema muy punk y con recorrido: [tratar de] predecir a los predictores. Fundamentalmente, para joder.

Los chefs de encuestas electorales tienen dos discursos —uno previo y otro posterior a la publicación de los resultados—, una serie de recetas y datos que solo excepcionalmente publican. Dirán que se ciñen a una metodología científica, etc. Literatura.

¿Quién demonios lee el segundo párrafo?

Me llega por Twitter lo que lleva por título Más suicidios y peor salud mental por la crisis en España y Grecia.

Hay una escena de la película Primera Plana resumida aquí pero que, por abreviar, reproduzco con la ayuda de Control-C y Control-V: Walter Matthau, director del Examiner, relee por encima del hombro de su redactor jefe, Jack Lemmond, mientras este redacta la gran exclusiva. “Pero, ¿no citas al Examiner?”, se queja el director. “Sí, lo pongo aquí, en el segundo párrafo”. “Y quién demonios lee el segundo párrafo?”, brama Matthau.

Dime qué muestreas y te diré cuál es tu sesgo

El telón de Aquiles del big data es el sesgo. Me gustaría hablar más de ello, pero me agarra de la pluma uno de esos NDAs. Así que hablaré de otra cosa.

Si le preguntas a la gente cuántos hermanos son en la familia, el promedio del resultado tenderá a ser superior al número medio de hijos por familia. Esencialmente, porque no estás muestreando familias sino hijos. El tautológico hecho de que las familias con más hijos tengan más hijos hace que estén sobrerrepresentadas en la muestra.

La democracia no representativa no es representativa

En estadística, una muestra representativa tiene que contener las características relevantes de la población en las mismas proporciones en que están incluidas en tal población (referencia).

En estos tiempos, se están poniendo de moda alternativas a la muy tradicional democracia representativa que, en contraposición a ella, no aspiran a serlo. Y su principal problema radica, precisamente, en que no lo son.

Lo anterior no es más que una opinión: es la constatación de un hecho. Esta semana pasada, en aras de una versión más directa y asamblearia de la democracia, ha habido en mi barrio un par de eventos en los que en presencia de la alcaldesa de Madrid el uno y del concejal de mi distrito el otro, se han tratado temas que me interesan directamente. Pero, oh, fatalidad, a la hora en que yo (y muchos otros) estamos lejos y ocupados ganándonos el pan.

Cuando falta la variable más importante (II)

No sé si esto que voy a contar me obliga a tragarme mis propias palabras. Porque siempre he pensado que era poco menso que imposible. Pero hace unos pocos días escribí sobre el asunto y hoy traigo otro similar a colación.

La variable más importante a la hora de construir un modelo es, precisamente, la que se quiere predecir. Casi todos los textos asumen que se conoce sin ningún género de dudas en, al menos, una determinada muestra que, además, corresponde más o menos a la población subyacente: si el paciente sobrevive o no; si la hipoteca entra en mora o no; si el cliente responde a la oferta o no, etc.

Localidad, globalidad y maldición de la dimensionalidad

Escribo hoy al hilo de una pregunta de la lista de correo de quienes estamos leyendo The elements of statistical learning.

Hace referencia a la discusión del capítulo 2 del libro anterior en el que trata:

  • El compromiso (trade off) entre el sesgo y la varianza de los modelos predictivos.
  • Cómo los modelos locales (como los k-vecinos) tienden a tener poco sesgo y mucha varianza.
  • Cómo los modelos globales (como los de regresión) tienden a tener poca varianza y mucho sesgo.
  • Cómo la _maldición de la dimensionalida_d afecta muy seriamente a los modelos locales y mucho menos a los globales.

Y voy a tratar de ilustrar esos conceptos con un ejemplo extraído de mi experiencia de consultor.