Artículos

Proporciones pequeñas y "teoremas" de "imposibilidad"

Esta entrada responde y complementa Malditas proporciones pequeñas I y II_ _trayendo a colación un artículo que ya mencioné en su día y que cuelgo de nuevo: On the Near Impossibility of Measuring the Returns to Advertising. ¡Atención al teorema de la imposibilidad de la Super Bowl!

Y el resumen breve: cada vez estamos abocados a medir efectos más y más pequeños. La fruta que cuelga a la altura de la mano ya está en la fragoneta del rumano. Solo nos queda la morralla y cada vez va a costar más separar grano y paja.

Incertidumbre en ránkings (o cómo la varianza es la mayor enemiga de la meritocracia)

Tengo por ahí leído y encolado el artículo League Tables and Their Limitations: Statistical Issues in Comparisons of Institutional Performance del perínclito Spiegelhalter que toma una serie de ránkings (de colegios, de hospitales) y trata de medir cuánto tienen de sustancia y cuánto de ruido.

Hace cosas muy similares a las que escribí aquí. Mi entrada, además, cuenta con la ventaja (que lo será solo para algunos) de usar la sintaxis y código de lme4 en lugar de la nomenclatura que más odio para describir los modelos mixtos utilizados.

¿Irán por aquí los tiros en el futuro de la "ciencia de datos"?

Para muchos, el futuro de la llamada ciencia de datos seguirá la estela dejada por

y sus continuadores usando cosas deep. Pero a la vez, sin tanto estruendo y con una mucho menor cobertura mediática, otros están trazando una ruta alternativa que ilustran artículos como Bayes and Big Data: The Consensus Monte Carlo Algorithm (atención todos a lo que hace uno de sus coautores, Steven L. Scott, que convierte en oro todo lo que toca). Como abrebocas, su resumen (con mi subrayado):

Así de floja está la evidencia científica (sobre el impacto de Airbnb en el mercado inmobiliario)

Un reciente artículo de El País tiene un título que lo dice todo: Los informes que refutan a la CNMC: Airbnb sí infla el precio de la vivienda en EE UU. Dice en la entradilla:

Tres estudios universitarios muestran que las plataformas de alquiler turístico han encarecido el mercado del alquiler en ciudades como Los Ángeles y Boston.

Así que he buscado uno de los tres, How Airbnb Short-Term Rentals Exacerbate Los Angeles’s Affordable Housing Crisis: Analysis and Policy Recommendations y me dispongo a comentarlo en vivo, página a página.

Tres titulares alternativos y un extracto de "Mala ciencia"

En 2012 el gobierno español retiró la tarjeta sanitaria a gente que no cumplía una serie de requisitos mínimos. Hoy parece que se la ha devuelto.

Hace poco se publicó un artículo, The deadly effects of losing health insurance (que ya se ha comentado aquí desde una perspectiva metodológica y de la inconsistencia de los resultados), que fue ampliamente comentado en prensa.

El titular podría haber sido (y, de hecho, lo fue) alguno (o alguna versión) de los siguientes (todos ellos soportados por el contenido del artículo):

Podría ser Simpson, pero a lo mejor es "otra cosita"

Observo en The deadly effects of losing health insurance cómo el efecto de interés, 15% sobre una población se convierte en efectos del 16%, 23% y 30% en sus tres subpoblaciones (útimas columnas de la tabla que ocupa la página 25). Es raro que el efecto combinado no esté cerca de la media ponderada (por población) de cada uno de sus subcomponentes.

Podría ser Simpson, pero hay motivos para pensar que hayan cambiado las proporciones de las poblaciones subyacentes (demasiado). Habría un efecto Simpson, por ejemplo, si se hubiese incrementado sustancialmente la proporción del grupo con el efecto (no confundir con la variación del efecto) globalmente más pequeño antes y después del tratamiento. Pero dudo que sea el caso.