Cortos (sobre IA y LLMs, fundamentalmente)

I. Que ssh tenía una puerta trasera (en sus últimas versiones). Está por todas partes, incluido en The Economist. Pasó, se ve, esto: El backdoor fue plantado en las XZ Utils. Su principal mantenedor es un tal Lasse Collin, que, se dice, no parece andar muy bien de salud mental. Otro desarrollador, Jia Tan, colaboró en el proyecto durante un tiempo. Finalmente, en febrero, acabó insertando el código malicioso. Se ve que el tal Jia Tan no existe; probablemente, se trate de una identidad falsa manejada por… ¿el gobierno ruso?

Algunas notas sobre los CIs

I. Supongamos que $\theta$ es un parámetro real. John D. Cook le construye el siguiente intervalo del confianza al 95%: Se toma un dado de 20 caras (como los de rol). Si sale un 1, el intervalo de confianza es el conjunto vacío. Si sale cualquier otro valor, el intervalo de confianza es el eje real entero. Es tan perfectamente válido (desde el punto de vista frecuentista) como cualquier otro.

Las ANOVAs tienen interés meramente histórico

Todo eso que se conoce como ANOVA tiene, a lo más, interés histórico. Se puede hacer más y mejor con igual o menor esfuezo. ¿Cómo? Aplicando lo que se cuenta aquí. Nota: Interés histórico no significa no interés: muchas veces existe un solapamiento importante entre el orden histórico de los conceptos y el orden en que es más natural aprenderlos (o enseñarlos).

¿Cómo se interpretan los resultados de estas regresiones

Esta entrada trata sobre las aparentes contradicciones que surgen cuando se comparan las regresiones $y \sim x$ y $x \sim y$. En particular, aqui se muestran y que vienen a decir: El tal Rodgers rinde por encima de lo que se espera para su salario. Para lo que rinde, gana demasiado. Lo cual, a pesar de lo contradictorio, no es un fenómeno extrañísimo. Si uno hace n <- 100 x <- rnorm(n) a <- .

modelplotr

R
Si leéis algo y tropezáis con un gráfico como es que lo que lo rodea vale la pena. En este caso, lo que lo rodea es este texto que algún LLM me ha resumido así: El texto analiza la importancia de evaluar el valor comercial de los modelos predictivos y las limitaciones de las métricas de evaluación tradicionales como la curva ROC. Presenta cuatro gráficos de evaluación (ganancias acumuladas, elevación acumulada, respuesta y respuesta acumulada) y tres gráficos financieros (costos e ingresos, ganancias y retorno de la inversión) que pueden ayudar a explicar el valor comercial de un modelo.

Cortos

I. Todo lo que uno necesita saber sobre los espacios de colores (y nunca supo que lo necesitaba preguntar). II. Todos estos asuntos sobre la intermitencia de las energías renovables, etc., ¡son tan estadísticos/probabilísticos! ¿Cómo no quererlos? III. Otro artículo sobre la reducción de la varianza. Esta vez, el de los precios del pescado en el sur de la India. El gráfico que lo dice todo es este: Otro de los instrumentos para reducir la varianza de los precios son los mercados, en general y los de futuros en particular.

Cortos (sobre LLMs)

I. Does GPT-2 Know Your Phone Number? discute dos asuntos distintos: Métodos para identificar y estimar el número de textos literales que aprende un LLM. Un análisis ya irrelevante de cómo afectaba a GPT-2. Obviamente, quiero que los LLMs sepan recitar literalmente la primera frase del Quijote o la última de Cien años de soledad. Y tal vez no (¿seguro que no?) información confidencial sobre alguien. Entre ambos extremos, ¿dónde está la frontera?

El "perspectivismo" en el debate sobre la naturaleza, objetiva o subjetiva, de la probabilidad

How probabilities came to be objective and subjective es un artículo que se resume así: Entre 1837 y 1842, al menos seis matemáticos y filósofos, escribiendo en francés, inglés y alemán, y trabajando independientemente unos de otros, introdujeron distinciones entre dos tipos de probabilidad. Aunque los fundamentos, contenidos e implicaciones de estas distinciones diferían significativamente de autor a autor, todos giraban en torno a una distinción filosófica entre “probabilidades objetivas” y “subjetivas” que había surgido alrededor de 1840.

El "precio medio de la electricidad" no es el precio medio de la electricidad

Por ahí se ven cosas como esta: Avisa del valor máximo, mínimo y medio de la electricidad en la mayor parte de España. Pero lo que llama precio medio no es el precio medio. Llama precio medio al resultado de select avg(pvpc) from pvpc_electricidad where date(dia_hora) = '2024-03-12' ; y no de select sum(pvpc * kwh) / sum(kwh) from pvpc_electricidad where date(dia_hora) = '2024-03-12' ; que sería lo suyo. Nótese cómo, en particular, el precio está positivamente correlacionado con el consumo —si es que el mercado eléctrico funciona como se espera de él— por lo que la primera expresión será siempre menor que la segunda.

Cartogramas "de Dorling"

R
Motivado por esta entrada construí usando muns <- st_read("data/CifraPob2023.shp") peninsula <- muns[muns$ccaa != 'Canarias',] plot(peninsula["pob_23"]) peninsula <- st_transform(peninsula, 25830) peninsula_dorling <- cartogram_dorling( x = peninsula, weight = "pob_23", k = 0.2, itermax = 100) plot(peninsula_dorling["pob_23"]) sobre unos datos que ya no recuerdo de dónde bajé. La única línea no autoexplicativa del código es peninsula <- st_transform(peninsula, 25830) que transforma las coordenadas originales de los datos en coordenadas proyectadas (o, más bien, las coordenadas proyectadas que rigen en la zona peninsular).

Cortos (casi todos sobre R)

I. ¿Que solo me haya enterado que existe la función coplot en R en 2024? Se habla de ella aquí y aquí. En el fondo, son los pequeños múltiplos de toda la vida con algunas pequeñas diferencias interesantes. II. Nota para mí: en mi próximo proyecto de predicción (de series temporales), acudir a Open Forecasting y darle una oportunidad antes y en lugar de aterrizar por inercia, por defecto y por pereza en Forecasting: Principles and Practice.

Errores en modelos. Zillow. Control de alquileres.

I. Errores en modelos A menudo he usado plot(cars$speed, cars$dist) abline(lm(dist ~ speed, data = cars), col = "red") con el que se crea la requetemanida gráfica útil para ilustrar aspectos relacionados con el ajuste de modelos. Hoy, toca de nuevo. Salvo que uno haga cosas muy extravagantes, los errores de un modelo están tanto por arriba como por debajo de la predicción. De hecho, en una amplia clase de modelos $\sum_i e_i =0$ en entrenamiento y, usualmente, la suma de los errores no debe de quedar muy lejos de cero tampoco en validación (y en el mundo real).