Una crítica a una crítica de MoMo

[Hoy puede que acabe escribiendo algo que lo que pasado un tiempo tal vez no me sienta muy orgulloso. Sospecho que puedo llegar a ser injusto. Pero dejaría de ser yo si me abstuviese de publicar lo que sigue.] Hoy me he desayunado con el artículo ¿Cómo se miden las muertes causadas por el calor? El MoMo estima el exceso de muertes atribuibles al exceso de temperaturas, no es un registro aparecido en Maldita.

"Scorings" para evaluar predicciones expresadas en términos de CIs

Ya he escrito bastante sobre scorings y métodos de evaluación de predicciones, particularmente las expresadas en términos probabilísticos. Los casos más habituales de estas últimas son el binario (en el que la predicción es una probabilidad en $[0,1]$) y el continuo en el que la predicción es una distribución de probabilidad. Pero sucede en ocasiones que el predictor viene expresado por un intervalo de confianza (o varios, con niveles de significancia distintos).

Medidas de similitud entre distribuciones

Por motivos que quedarán claros en entradas futuras, he estado investigando sobre medidas de proximidad entre distribuciones de probabilidad. En mi caso concreto, además, multidimensionales (y de dimensión alta, en $R^N$, con $N$ del orden de docenas o centenas). Supongamos que tenemos dos variables aleatorias $X, Y \in R^N$ y queremos ver estudiar en qué medida son próximas sus distribuciones. Idealmente, además, utilizando un método que pueda utilizarse a través de muestras de dichas variables.

El estilo es la coocurrencia de patrones

[Aquí, entre otras cosas, se abunda una serie de tres que realicé hace seis años sobre el asunto y que puede consultarse aquí.] Esta entrada trata sobre cómo se puede caracterizar en términos matemáticos, medir y, en última instancia, operar sobre un concepto tal lábil como lo es el del estilo (o textura) de una imagen. Por ejemplo, lo que caracteriza a una pintura negra de Goya, un primer plano de un plato de macarrones o una viñeta de un cómic de Mortadelo.

L-momentos: en busca de la intuición

Existen esquinitas de la estadística con las que uno solo tropieza cuando su práctica lo expone a sus aplicaciones menos habituales. Estos días ha sido el asunto de los l-momentos. En esta entrada exploro la intuición acerca del concepto —porque uno no la hallará ni aquí ni en ninguno de los artículos que he consultado al respecto— y, más en general, el interés que pueda tener fuera del ámbito en el que los he encontrado.

Sobre la hipótesis de la variedad

Dice (y traduzco) François Chollet en su libro sobre aprendizaje profundo: […] la hipótesis de la variedad [manifold hypothesis] consiste en que todos los datos naturales están situados sobre una variedad de dimensión baja dentro del espacio de alta dimensionalidad en el que están cosificados. Es una hipótesis muy fuerte sobre la estructura de la información en el universo. Pero, por lo que sabemos hasta la fecha, no solo se cumple sino que es el motivo por el que el aprendizaje profundo funciona.

Sumas de variables de Bernuilli heterogénas

I. El otro día planteé en Twitter la siguiente encuesta: Como bien puede apreciarse, 16 personas tuvieron a bien contestar y nada menos que siete, casi la mitad, dieron con la respuesta acertada. Me gustaría saber qué cuentas de Twitter pueden presumir de una audiencia tan cualificada. ¿Por qué es esa respuesta correcta? Sean $p_i$ las probabilidades de éxito de $n$ bernoullis y $p$ el valor medio de las $p_i$. Entonces, la varianza de $Y$ es $np(1-p) = np - np^2$ y la de $X$ es

"Frente a la aspiración de una representación precisa, debemos considerar las limitaciones conceptuales, matemáticas y computacionales"

La cita que da título a la entrada procede —con mi ¿mala? traducción— del artículo Philosophy and the practice of Bayesian statistics que, en realidad, trata de otra cosa. Pero que resume muy bien algo que mucha gente tiende a ignorar: mucho del corpus de lo que actualmente llamamos positivamente estadística está condicionado por las circunstancias conceptuales, matemáticas y, muy especialmente, computacionales del momento en el que fueron concebidos. Un ejemplo: hace cien años, aún se discutía cómo calcular la $\sigma$ de una muestra.

Una aplicación/ilustración casi "full Bayesian" del filtro de Kalman

Cuestiones que no vienen al caso me empujaron finalmente a escribir una entrada que llevaba creo que años aparcada: ilustrar el uso del filtro de Kalman desde una perspectiva explícitamente bayesiana, luego accesible. Introducción Esto va, en resumidas cuentas, de mejorar la precisión de un sensor (un GPS, p.e.) que proporciona información ruidosa sobre la posición de un objeto que se mueve en el espacio obedeciendo ciertas ecuaciones. En particular, voy a utilizar el caso de un móvil que parte del origen ($x_0 = 0$), con una velocidad inicial de $10$ y que está sometido a una aceleración constante de $-0.

Matrices de confusión, sensibilidad, especificidad, curva ROC, AUC y todas esas cosas

Esta entrada es una breve introducción a los conceptos indicados en el título. Está motivada por una pregunta que se formuló en Twitter acerca de la existencia o no de lo que voy a escribir en español y a que ninguna de las respuestas aportadas me satisfizo. Todos esos conceptos hacen referencia al estudio de la bondad de un modelo de clasificación (es decir, un modelo que trata de predecir una etiqueta (o una variable categórica, si se quiere) a partir de ciertos datos).

Un matemático visita los modelos de difusión (generativos)

Los modelos generativos —aunque aquí generativo se use en un sentido distinto del habitual en estas páginas— están de moda (véase esto o esto). Estas aplicaciones están basadas en una serie de técnicas que el siguiente diagrama (extraído de aquí) resume estupendamente: La más reciente de todas estas técnicas y la que subyace a las últimas y más sorprendentes aplicaciones es la de los llamados modelos de difusión. Les he estado echando un vistazo y esta entrada resume lo que he aprendido de ellos.

Umbralistas vs antiumbralistas

Dentro de ese submundo de la estadística (¿o de la epidemiología?) que estudia qué es seguro y qué no y los riesgos para la salud de diversos productos o prácticas, existen dos familias de difícil reconciliación: los umbralistas y los antiumbralistas. Sus posiciones pueden ilustrarse gráficamente así: Las posiciones típicas de los umbralistas quedan resumidas aquí. Los antiumbralistas suelen ser más mediáticos (a la prensa le encantan afirmaciones del tipo: ¡el alcohol causa X desde la primera gota!

Vale, el modelo es y = f(x) + error y f es importante, pero lo que le da significado es y

Esta es una entrada sobre la semántica de los modelos que resume mi planteamiento en una discusión que tuve hace un tiempo en Twitter. La he buscado sin éxito, así que la resumo. Alguien —no recuerdo bien— quería explicar cómo hace AEMET las predicciones meteorológicas probabilísticas. Pero con un error de planteamiento. Venía a decir que una predicción meteorológica probabilística (p.e., la probabilidad de que mañana llueva en Madrid) no significa algo así como que de tantos días parecidos a los de hoy, al día siguiente llovió en tal proporción sino otra cosa distinta.