Estadística vs siquiatría: la aparente contradicción, la profunda síntesis

[Nota: esta entrada está indirectamente motivada por mi asistencia a la presentación (y posterior adquisición) del libro “Los peligros de la moralidad” de Pablo Malo hoy día 3 de diciembre de 2021.] Desde Freud hasta Pablo Malo son muchos los siquiatras que han intervenido en el debate público aportando su visión sobre distintos temas. Desde ¿quién? hasta ¡tantos! son innumerables los estadísticos que han intervenido (generalmente, de modo implícito) en el debate público aportando su visión sobre distintos temas.

¿Por qué cabe argumentar que estos resultados infraestiman la efectividad de las vacunas contra el covid?

Me refiero a los mostrados en el siguiente gráfico (del que he sido una microcausa): Siguiendo recomendaciones, he decidido visualizar los datos sobre la gravedad de casos de COVID-19 según estado de vacunación que hizo públicos el Ministerio de Sanidad antes de ayer. Este gráfico permite visualizar la tasa por grupos y la diferencia entre ellas al mismo tiempo. pic.twitter.com/t3zcSsQUKD — 📊⛏ Picanúmeros (@Picanumeros) November 25, 2021 En él se ve, por ejemplo, como la probabilidad de acabar en la UCI para la gente entre 60 y 80 años es hasta 23 veces mayor entre los no vacunados que entre los vacunados.

Un episodio relevante para estas páginas extraído de "Un espía perfecto"

Al morir le Carré me di cuenta de que no había leído nunca nada del tal señor. Una búsqueda en Google me sugirió A Perfect Spy como la, si una, novela que leerle. De sus muchas páginas, rescato una breve subhistoria por un interés para mis lectores. El libro es del 86. La acción (principal) del libro (que contiene muchos episodios en que se remonta a épocas anteriores) ocurre entre el 83 y el 84, calculo.

Medias ponderadas a lo Uluru

Dicen que el brote de inflación que estamos viviendo es atípico (y según algunos, menos preocupante) porque no está generalizada sino concentrada en un número pequeño de productos. Trae The Economist en su número del 6 de noviembre (de 2021) un artículo al respecto que tiene cierto interés estadístico. Comienza comparando la inflación de ahora con la de otros años donde el incremento de los precios fue, de acuerdo con cómo se computa tradicionalmente la inflación, igual, a través de la distribución de los incrementos de precios sobre las distintas categorías:

Sobre el almacenamiento "industrial" de la energía eléctrica

Este es un tema sobre el que sé tan poco que hoy mismo (que no es el día en el que se publica esto) he metido la pata dos veces en Twitter por citar datos que no eran. Por enmendarme públicamente y dada la relevancia del asunto, voy a sacar unos números. La fuente es la página del Balance Eléctrico de REE, que hoy luce y que nos proporciona datos sobre el bombeo, i.

Garantías de robustez en inferencia causal

Por motivos que no vienen al caso, me ha tocado ponderar el artículo The use of controls in interrupted time series studies of public health interventions. Lo comento hoy porque hace referencia a temas que me ha gustado tratar en el pasado. El artículo, prima facie, es un poco viejuno. De hecho, casi todo lo que se escribe sobre metodología en el mundo de las aplicaciones (y el que cito tiene que ver con salud pública) tiene tufillo de naftalina.

La miseria de la inferencia causal vivida

X escribe en 2020: In particular, panel A presents the results when the municipalities are divided according to the real average Internet speed (Mbps). As is evident, the effect of extreme-right mayors on hate crimes is concentrated in municipalities where Internet speed is high, especially when the intensive margin is considered […] Y escribe también en 2020: Results show that Internet availability between 2008 and 2012 is associated with a better knowledge of (national) immigration dynamics and that it leads to an overall improvement in attitudes towards immigrants.

¿Es Bunge un fraude?

Mi primer contacto con la obra de Mario Bunge fue en mi época de estudiante en Zaragoza. Por algún motivo —probablemente, porque en aquella época repasar los lomos de los libros en las bibliotecas y librerias era el equivalente al perder el tiempo en internet de hogaño— cayó en mis manos un libro suyo. Solo recuerdo que leerlo requirió más empeño que aprovechamiento trujo a aquel chaval de provincias. El segundo —hará un par de años— fue una grabación de una conferencia que dio en Buenos Aires.

Más sobre aquel concepto estadístico que aconsejé desaprender: la suficiencia

En esta entrada abundo en una que escribí hace ocho años: Conceptos estadísticos que desaprender: la suficiencia. Lo hago porque casualmente he tropezado con su origen y justificación primera, el afamado artículo On the Mathematical Foundations of Theoretical Statistics del nunca suficientemente encarecido R.A. Fisher. Criticaba en su día lo inútil del concepto. Al menos, en la práctica moderna de la estadística: para ninguno de los conjuntos de datos para los que trabajo existe un estadístico suficiente que no sea la totalidad de los datos.

Monty Hall, reformulado

Considérese el siguiente juego: Hay tres sobres indistinguibles sobre una mesa. Uno de ellos contiene un premio. Puedes elegir o bien uno de ellos o bien dos de ellos al azar. Convénzase uno de que es mejor elegir dos sobres que uno: tienes una probabilidad de ganar el premio de 2/3 contra la de 1/3 si eliges solo uno. Convénzase uno de que el problema de Monty Hall en su formulación habitual es solo una reformulación artificiosa y engañosa del juego anterior.

Dos cuestiones sobre la naturaleza de la probabilidad planteadas por Keynes en 1921 pero que siguen hoy igual de vigentes

I. A Treatise on Probability, la obra de Keynes (sí, el famoso) de 1921, es un libro muy extraño que se puede leer de muchas maneras. Puede servir, si se hace poco caritativamente, para denunciar el lastimoso estado en el que se encontraba la probabilidad antes de la axiomatización de Kolmogorov, 12 años depués de su publicación. O también, si se hace más cuidadosamente, para rescatar una serie de consideraciones que aun hoy muchos hacen mal en ignorar.

Sobre las R² pequeñas y sus interpretaciones

Hace unos meses escribí una entrada en defensa (parcial) de una regresión lineal con una R² pequeña. He vuelto a pensar sobre ella y retomo la discusión para esclarecer —sobre todo, para profanos— qué mide la R² y cómo interpretarla según el contexto. Comienzo por un experimento físico mental. En un laboratorio se realiza un experimento para medir la relación entre dos magnitudes físicas, un efecto $latex y$ y una causa $latex x$.