Diagramas causales hiperbásicos (III): mediadores

Esta es la tercera entrada de la serie sobre diagramas causales hiperbásicos, que, como la segunda, no se entenderá sin —y remito a— la primera que define el contexto, objetivo e hipótesis subyacentes de la serie completa. Además, sería conveniente haber leído la segunda. Esta vez, el diagrama causal es una pequeña modificación del de la anterior: Ahora, la variable $X$ influye sobre $Y$ por dos vías: directamente y a través de $Z$. Variables como $Z$, conocidas como mediadores son muy habituales. Uno podría pensar que, realmente, ninguna $X$ actúa directamente sobre ninguna $Y$ sino a través de una serie de mecanismos que involucran a variables intermedias $Z_1, \dots, Z_n$ que constituyen una cadena causal. Puede incluso que se desencadenen varias de estas cadenas causales que transmitan a $Y$ la potencia de $X$. Que hablemos de la influencia causal de $X$ sobre $Y$ es casi siempre una hipersimplificación de la realidad. ...

22 de marzo de 2022 · Carlos J. Gil Bellosta

Diagramas causales hiperbásicos (II): ¿qué significa "controlar por" una variable?

Esta es la segunda entrada de la serie sobre diagramas causales hiperbásicos. No se entenderá sin —y remito a— la entrada anterior que define el contexto, objetivo e hipótesis subyacentes de la serie completa. El diagrama causal objeto de esta entrada es apenas una arista más complejo que el de la anterior: Ahora la variable $Z$ afecta tanto a $Y$ (como en la entrada anterior) como a $X$ (esta es la novedad). Es una situación muy común en el análisis de datos. Algunos ejemplos: ...

18 de marzo de 2022 · Carlos J. Gil Bellosta

Diagramas causales hiperbásicos (I): variables omitidas y sus consecuencias

Comienzo hoy una serie de cuatro entradas (¡creo!) sobre diagramas causales supersimples que involucran a tres variables aleatorias: $X$, $Y$ y $Z$. En todos los casos, estaré argumentaré alrededor de en las regresiones lineales Y ~ X e Y ~ X + Z porque nos permiten leer, interpretar y comparar rápida y familiarmente los resultados obtenidos. En particular, me interesará la estimación del efecto (causal, si se quiere) de $X$ sobre $Y$, identificable a través del coeficiente de $X$ en las regresiones. No obstante, quiero dejar claro que: ...

10 de marzo de 2022 · Carlos J. Gil Bellosta

La miseria de la inferencia causal vivida

X escribe en 2020: In particular, panel A presents the results when the municipalities are divided according to the real average Internet speed (Mbps). As is evident, the effect of extreme-right mayors on hate crimes is concentrated in municipalities where Internet speed is high, especially when the intensive margin is considered […] Y escribe también en 2020: Results show that Internet availability between 2008 and 2012 is associated with a better knowledge of (national) immigration dynamics and that it leads to an overall improvement in attitudes towards immigrants. ...

11 de noviembre de 2021 · Carlos J. Gil Bellosta

Nuevo vídeo en YouTube. Segunda entrega sobre causalidad (y, esta vez, datos observacionales)

El vídeo es y abunda sobre el archiconocido correlación no implica causalidad. El artículo de Chris Anderson que se menciona es_ The End of Theory_.

11 de julio de 2021 · Carlos J. Gil Bellosta

Causalidad y paraísos fiscales

El argumento del artículo Paraísos Fiscales, Wealth Taxation, and Mobility pivota esencialmente sobre el gráfico que resultará familiar a muchos lectores de este blog (y, si no, mirad esto). Se trata de un estudio causal de libro en el que se pretende medir el efecto de una política ocurrida en 2010 sobre la línea roja y la línea azul. La política en cuestión es la reintroducción del impuesto del patrimonio en España en 2010 y las líneas azul y rojas… no está claro. Deberían ser, pretenden ser, el incremento de personas sujetas a dicho impuesto en Madrid (en rojo) y en otras regiones (azul). Los autores lo resumen diciendo que el número de ricos viviendo en Madrid ha subido en 6000 mientras que en el resto de las 16 regiones ha decrecido en una media de 375. Convenientemente, 16 * 375 = 6000. ...

12 de mayo de 2021 · Carlos J. Gil Bellosta

Nuevo vídeo en YouTube: una breve introducción a la causalidad "a la Pearl"

Acabo de subir a Youtube mi nuevo vídeo, que es una somerísima introducción a la causalidad según Pearl. De hecho, el vídeo está basado en el epílogo de su libro, Causality, de 2000. En el vídeo me refiero a dos fuentes de las que anuncio enlaces. Son: ...

9 de mayo de 2021 · Carlos J. Gil Bellosta

Socialismo y fascismo en Italia: una reflexión sobre la causalidad y las microcausas

[Una entrada más bien especulativa acerca de esbozos de ideas ocurridas durante un paseo vespertino por Madrid y que apunto aquí por no tener una servilleta a mano.] El artítulo War, Socialism and the Rise of Fascism: An Empirical Exploration me ha hecho volver a reflexionar sobre el asunto de la causalidad (al que, además, debo un apartado en siempre inacabado libro de estadística para los mal llamados científicos de datos). ...

2 de octubre de 2020 · Carlos J. Gil Bellosta

"Regression models that claim to reach causal conclusions, as favoured by economists"

Voy a guardar el extracto de The Art of Statitstics para usarlo con la misma malísima baba que su autor en coyunturas tales como esta: Recordad las sabias palabras de Spiegelhalter: https://t.co/mne7xhMN3W pic.twitter.com/x8YZxiMvgp — Carlos Gil Bellosta (@gilbellosta) September 30, 2020

1 de octubre de 2020 · Carlos J. Gil Bellosta

CausalImpact me ha complacido mucho

Estoy aquí analizando datos para un cliente interesado en estudiar si como consecuencia de uno de esos impuestos modennos con los que las administraciones nos quieren hacer más sanos y robustos. En concreto, le he echado un vistazo a si el impuesto ha encarecido el precio de los productos gravados (sí) y si ha disminuido su demanda (no) usando CausalImpact y me ha complacido mucho que la salida de summary(model, "report") sea, literalmente, esta: ...

27 de marzo de 2020 · Carlos J. Gil Bellosta