Cortos

Cómo exprimir la prueba de Kolmogorov-Smirnov y unos cuantos asuntos más

Suponía que era de conocimiento universal. Pero si John D. Cook siente la necesidad de recordarnos que las probabilidades pequeñas se suman pero las grandes no, será por algo.

Lo raro es que no ocurra nunca nada altamente improbable, edición número 6210.

En los extremos, la varianza importa más que la media. (Se refiere a dos poblaciones con medias y varianzas distintas. Si una observación es extrema, es casi seguro que viene de la población con mayor varianza que la de mayor media, para casi todas las definiciones razonables y compatibles de mayor y extremo).

Algunos apuntes sueltos sobre causalidad

Bajo cierto punto de vista, el estudio estadístico de la causalidad viene a consistir en la estimación de modelos incompletos. Un modelo completo es uno que contiene todas las ecuaciones / relaciones causales que afectan a un fenómeno. En uno incompleto, las variables y ecuaciones faltantes introducen sesgos de distinta naturaleza. Uno de los sitios donde mejor lo he visto contar es en Simulating confounders, colliders and mediators, de donde extraigo, además, el siguiente gráfico:

Cinco breves notas sobre LLMs

I.

En The “it” in AI models is the dataset se sostiene algo que ya traíamos sabido: que los modelos (incluidos los LLMs) son resúmenes de los datos con los que se entrenan:

Así, cuando hablas de “Lambda”, “ChatGPT”, “Bard” o “Claude” no te refieres a los pesos del modelo sino al conjunto de entrenamiento.

II.

Hablar de hardware en el contexto de los LLMs parecería casi exclusivamente hablar de NVIDIA, pero no solo. El modelo es el siguiente:

Los boxplots como "herramientas de entretiempo" y cuatro asuntos más

I.

Aquí se lee:

Puede parecer absurdo verificar un modelo comparando sus inferencias con las expectativas razonables —–si ya supiéramos qué esperar, ¿para qué modelar nada?— pero hay dos motivos por las que este procedimiento nos parece razonable.

Es muy interesante también en tanto que describe la cantidad de hipótesis que entran —más bien, que alguien mete— en uno de esos modelos tan objetivos y data driven que vemos publicados por ahí.

Una propuesta para cambiar la sintaxis de SQL y cuatro asuntos más

Mesop, una herramienta de Google para crear “AI apps” en Python.

¿Se nos está yendo el tamaño del código JavaScript de las páginas web de las manos? (De cuya lectura, además, he aprendido que existe webpagetest.org, que parece mejor que otras alternativas que he probado por ahí).

uv, un gestor de paquetes de Python “extremadamente rápido” escrito en Rust. ¿Tocará volver a migrar?

Aquí hay una discusión sobre la diferencia entre lugares y sitios —términos ambos que el artículo enlazado define estipulativamente—. Proyectos como OpenStreetMap se centran en los primeros: coordenadas, sistemas de referencia, mapas, etc. Overture Maps, parece ser, quiere centrarse en los segundos, los sitios, es decir, los bosques, edificios, panaderías, etc. que ocupan el espacio y que son el objetivo —los mapas son solo el medio— de nuestra preocupación por lo que puebla el espacio.

Comparaciones vs efectos y cuatro asuntos más

Aquí se lee:

Preferimos el término “comparaciones” al de “efectos” en tanto que el primero es más general que el segundo. Una comparación es un efecto solo en aquellos casos en los que el modelo tiene una interpretación causal válida.

En Instrumental variable regression and machine learning se discute cómo aplicar la técnica de las variables instrumentales no con regresiones lineales sino con otro tipo de modelos más generales (y se ilustra con random forests).

Unas cuantas aplicaciones de los LLMs

En la entrada de hoy recopilo unas cuantas aplicaciones de los LLMs.

Enlazo una entrevista a Tyler Cowen discutiendo cómo usa los GPTs. Según extrae NotebookLM de su transcripción, sus principales casos de uso son:

  • Investigar hechos históricos oscuros.
  • Traducir cualquier cosa.
  • Obtener información sobre menús en restaurantes en el extranjero.
  • Identificar plantas y pájaros.
  • Comprender temas complejos y generar preguntas para entrevistas.
  • Obtener información a partir de los diarios personales.
  • Entender las necesidades de su perro.

Aquí, una charla de Simon Willison sobre LLMs en general y sus aplicaciones en particular.

Mamba vs "transformers" y cuatro asuntos más

I. Lo que hemos aprendido

Una serie de tres entradas (táctica, estrategia y operaciones) sobre todo lo que hemos aprendido en el tiempo que llevamos desarrollando aplicaciones con LLMs.

II. Prompts

El modelo CO-STAR (contexto, objetivo, estilo, tono, audiencia y respuesta) me ha resultado muy útil para ciertas aplicaciones. Aunque, un día que no es el de hoy, será posible automatizar la búsqueda de prompts efectivos.

III. GPT-2

Cuando apareció, GPT-2 parecía realmente magia. Pero hoy se puede entrenar en hora y media por veinte dólares.

Argumentos para discutir sobre la inteligencia de los LLMs y cuatro asuntos más

I. Visualización

Recopilo aquí cuatro enlaces vagamente hermanados por su relación con la visualización (y los LLMs):

  • Exploración interactiva de la arquitecturas de ciertos LLMs, aquí.
  • Una visualización/animación sobre cómo funcionan los transformers, aquí.
  • Aquí, en vídeo.
  • Y dos para tokens, este y este.

II. Inteligencia

Dos discusiones, esta y esta, sobre la inteligencia de los LLMs. De la primera rescato eso de que estamos moviendo constantemente la portería de eso que llamamos inteligencia. De la segunda, la vinculación de lo que hacen actualmente los LLMs con el pensar deprisa y despacio de Kahneman.

Algunos apuntes sobre tecnología moderna y no tan moderna

I.

Las X han cumplido 40 años (y urge jubilarlas).

II.

Escribes código en el panel de la izquierda, eliges el compilador y ves el código generado (típicamente, ensamblador) en el panel de la derecha de esto.

III.

Alguien hizo ingeniería inversa de GitHub Copilot y escribió esto.

IV.

Esta aplicación convierte PDFs en podcasts. Muy alineada con las tendencias de estos tiempos que vivimos.

V.

Aquí no solo se estima el consumo de energía que realiza un LLM al generar texto sino que también se compara con el del sujeto al que reemplazaría. Eso sí, no menciona a Jevons por ninguna parte.