Diagramas causales hiperbásicos (I): variables omitidas y sus consecuencias
Comienzo hoy una serie de cuatro entradas (¡creo!) sobre diagramas causales supersimples que involucran a tres variables aleatorias: $X$, $Y$ y $Z$. En todos los casos, estaré argumentaré alrededor de en las regresiones lineales Y ~ X
e Y ~ X + Z
porque nos permiten leer, interpretar y comparar rápida y familiarmente los resultados obtenidos. En particular, me interesará la estimación del efecto (causal, si se quiere) de $X$ sobre $Y$, identificable a través del coeficiente de $X$ en las regresiones.
No obstante, quiero dejar claro que: