Bayesianismo y frecuentismo bajo la óptica de la teoría de la decisión, I
[Esta es la primera de una serie de tres o cuatro entradas sobre el tema que se anuncia en el título.]
$\theta$ es un valor desconocido. Por algún motivo, necesitamos encontrar un valor $\hat{\theta}$ —que podríamos llamar de cualquier manera, pero que, por lo que sigue, será podemos convenir en denominar estimación de $\theta$— tal que minimicemos una determinada función de error
$$L(\theta, \hat{\theta}).$$
Por fijar ideas, un ejemplo: alguien nos puede haber dicho que ha pensado un número (entero) entre el 1 y el 10, $\theta$ y que nos dará un premio si lo acertamos, es decir, si proporcionamos un $\hat{\theta}$ y resulta que $\theta = \hat{\theta}$. Una función de error aplicable sería: