Estadística

¿Por qué nos habremos acostumbrado a esto?

Recuerdo el escándalo que me produjo el siguiente modo de razonar estadístico en mi primerísima aproximación al asunto:

  • Hago un test de significancia (p.e., para ver si dos muestras tienen la misma varianza).
  • Si no es significativo, asumo que las varianzas son iguales.
  • Continúo con el test siguiente…

Salí de aquella clase pensando que los romanos estaban locos. Luego, por no ser el único que parecía circular en sentido contrario por la autopista, di por bueno pulpo como animal de compañía. Ahora observo el razonamiento con una mezcla de menosprecio y condescendencia. Pero aún siento, vívido como el primer día, el encontronazo con ese pseudoargumento lógico-matemático.

Causalidad y paraísos fiscales

El argumento del artículo Paraísos Fiscales, Wealth Taxation, and Mobility pivota esencialmente sobre el gráfico

que resultará familiar a muchos lectores de este blog (y, si no, mirad esto). Se trata de un estudio causal de libro en el que se pretende medir el efecto de una política ocurrida en 2010 sobre la línea roja y la línea azul.

La política en cuestión es la reintroducción del impuesto del patrimonio en España en 2010 y las líneas azul y rojas… no está claro. Deberían ser, pretenden ser, el incremento de personas sujetas a dicho impuesto en Madrid (en rojo) y en otras regiones (azul). Los autores lo resumen diciendo que el número de ricos viviendo en Madrid ha subido en 6000 mientras que en el resto de las 16 regiones ha decrecido en una media de 375. Convenientemente, 16 * 375 = 6000.

Más sobre si la estadística es una ciencia

A veces nos encontramos con problemas como:

  • curar un orzuelo,
  • calcular el área por debajo de una curva,
  • medir la altura de la torre de una iglesia o
  • estimar la elasticidad del consumo de un producto con respecto a su precio

y utilizamos técnicas como

  • preparar un ungüento de acuerdo con las instrucciones de una vecina octogenaria;
  • pintar la curva sobre un cartón, recortarlo y pesarlo;
  • preguntarle al párroco u
  • obtener datos de precios, consumos y hacer algún tipo de regresión.

Algunas de esas técnicas son tecnologías; otras, no. Todas las tecnologías son técnicas, pero no a la inversa. Una tecnología es una técnica basada en la ciencia.

Un artículo muy poco BdE del BdE

En tiempos, cuando me dedicaba a esas cosas, el principal motivo por el que en los bancos que conocí por dentro no usaban otra cosa que GLMs era el BdE. Más concretamente, el carpetovetonismo del BdE: el BdE quería y esperaba GLMs, los bancos construían y mostraban GLMs a los reguladores y todo el mundo vivía feliz y despreocupado de las novedades en su covacha.

Ahora, en el BdE han publicado esto, cuyo resumen es:

¿Por qué es tan enrevesada la definición de intervalo de confianza?

En esta entrada voy a tratar de reconstruir históricamente el concepto de intervalo de confianza (IC) para tratar de explicar por qué el concepto ha llegado a tener una definición e interpretación tan precisa como confusa (e inútil). La interpretación de lo que realmente son los IC son el coco —el que se lleva a los diletantes que saben poco— con el que amenazar a quienes tienen inseguridades metodológicas y una marca de erudición incontestable para quienes son capaces de enunciarla sin que se les trabe la lengua.

Gigerenzer sobre riesgo e incertidumbre

Esta es una entrada breve no tanto para comentar el vídeo

como para dejar constancia de algunas notas y referencias a vuelapluma que me sugirió. A saber:

Cierro con una nota personal:

Nutri-Score: el "algoritmo"

Se hablará mucho de Nutri-Score y de cómo es pernicioso dejar en manos de un algoritmo la decisión sobre la conveniencia o no de ciertos alimentos. Nutri-Score se convertirá en otra de esas malévolas encarnaciones de las matemáticas con vocación de destrucción masiva.

Pero que conste que Nutri-Score es, como algoritmo, solamente esto (fuente):

Al menos, esta vez no se lo podrá tachar de opaco.

La falacia de la conjunción desaforada

La falacia, para aquellos que no la conozcan, está descrita aquí. El ejemplo más citado al respecto es el de Linda:

Linda tiene 31 años de edad, soltera, inteligente y muy brillante. Se especializó en filosofía. Como estudiante, estaba profundamente preocupada por los problemas de discriminación y justicia social, participando también en manifestaciones anti-nucleares. ¿Que es más probable?

  1. Linda es una cajera de banco.

  2. Linda es una cajera de banco y es activista de movimientos feministas.

Sobre la "inferencia basada en magnitudes"

Este artículo (sobre si los estadísticos se autoaplican el mismo rigor metodológico a la hora de seleccionar herramientas de análisis que luego exigen a otros) me llevó a este otro artículo donde se menciona una técnica, la inferencia basada en magnitudes, MBI en lo que sigue, por sus siglas en inglés, de la que trata lo que sigue.

Buscaban las autoras del segundo artículo un ejemplo de una técnica de esas que se publican en revistas de metodología estadística que acabara no teniéndose de pie. La encontraron en la MBI, que es una técnica:

Sobre el teorema de Aumann

[Del que ya hablé hace un tiempo desde una perspectiva diferente.]

Prioris

A y B (dos personas) tienen la misma priori Beta(1, 1) —que es uniforme en [0, 1]— sobre la probabilidad de cara de una moneda.

Datos

Entonces A presencia una tirada de la moneda (a la que no asiste B) y es cara. Su priori se actualiza a una Beta(1, 2).

Luego B presencia una tirada de la moneda (a la que no asiste A) y es cruz. Su priori se actualiza a una Beta(2, 1).