Estadística

Distancias (V): el colofón irónico-especulativo

Remato la serie sobre distancias con una entrega especulativa. Según se la mire, o bien nunca se ha hecho esa cosa o bien nunca ha dejado de hacerse.

El problema es que ninguna de las propuestas desgranadas por ahí, incluidas las de mis serie, responde eficazmente la gran pregunta:

¿Son más próximos un individuo y una individua de 33 años o una individua de 33 y otra de 45?

La respuesta es contextual, por supuesto, y en muchos de esos contextos habría que tener en cuenta las interacciones entre variables, que es a lo que apunta la pregunta anterior.

Distancias (IV): la solución rápida y sucia

Prometí (d)escribir una solución rápida y sucia para la construcción de distancias cuando fallan las prêt à porter (euclídeas, Gower, etc.).

Está basada en la muy socorrida y casi siempre falsa hipótesis de independencia entre las distintas variables $latex x_1, \dots, x_n$ y tiene la forma

$$ d(x_a, x_b) = \sum_i \alpha_i d_i(x_{ia}, x_{ib})$$

donde los valores $latex \alpha_i$ son unos pesos que me invento (¡eh!, Euclides también se inventó que $latex \alpha_i = 1$ y nadie le frunció el ceño tanto como a mí tú ahora) tratando de que ponderen la importancia relativa que tiene la variable $latex i$ en el fenómeno que me interesa.

La "cocina", para anumeristas y conspiranoicos

El otro día —no importa dónde— presencié los denodados y desencaminados esfuerzos de alguien —tampoco importa quién— por explicar primero y convencer después de los beneficios de la llamada cocina de las encuestas electorales. Constantado la inoperancia de los argumentos técnicos, estuve pensando un buen rato en buscar símiles cotidianos. Di con este, que es el que comparto por referencia para mí y puede que para otros.

Tienes ese amigo que dizque va a llegar en 30 minutos y lo hace al cabo de una hora. Cuando dice 15 minutos, tarda 30. Convierte los 10 en 20. Etc. Por un lado están las cifras declaradas (30, 15, 10,…) y, por otro, las observadas (60, 30, 20,…). No hace falta ser muy lince para

¿Qué números admiten la distribución de Benford?

[Esta entrada es casi una caracterización de lo que promete el título. Quitarle el casi sería prolijo. Pero creo que casi, casi, se adivina de lo que sigue.]

Siempre que hablamos de distribuciones de probabilidad, somos muy conscientes de los requisitos y condiciones bajo las que aplican. Con una excepción: al hablar del manido Benford. En tales casos se suele argumentar de una manera un tanto mística. Y doblemente mística, como consecuencia, cuando toca explicar por qué en ciertos datos concretos no aplica.

De A/B a DiD

Un test A/B consiste en (o aspira a) estimar (y tal vez promediar) las diferencias

predict(modelo_t, x) - predict(modelo_c, x)

donde modelo_t y modelo_c son modelos construidos en grupos tratados y no tratados de cierta manera.

Entra el tiempo.

Ahora ya no se trata de medir esas diferencias sino las diferencias entre los incrementos antes y después. Que se hace construyendo cuatro modelos para con ellos obtener

(predict(modelo_td, x) - predict(modelo_ta, x)) -

Codificación de categóricas: de (1 | A) a (B | A)

La notación y la justificación de (1 | A) está aquí, una vieja entrada que no estoy seguro de que no tenga que retocar para que no me gruña el ministerio de la verdad.

Esta entrada lo es solo para anunciar que en uno de nuestros proyectos y a resultas de una idea de Luz Frías, vamos a implementar una versión mucho más parecida al lo que podría representar el término (B | A), que es, casi seguro, chorrocientasmil veces mejor.

No es tanto sobre la media como sobre la maldición de la multidimensionalidad

El artículo que motiva esta entrada, When U.S. air force discovered the flaw of averages, no lo es tanto sobre la media como sobre la maldición de la multidimensionalidad.

Podría pensarse que es una crítica a la teoría del hombre medio de Quetelet en tanto que niega la existencia de ese sujeto ideal. Pero lo que dice es una cosa sutilmente distinta:

Using the size data he had gathered from 4,063 pilots, Daniels calculated the average of the 10 physical dimensions believed to be most relevant for design, including height, chest circumference and sleeve length.

Distancias (III): la gran pregunta

Dejemos atrás los puntos en el plano. Olvidemos al Sr. Gower. La gran pregunta a la que uno se enfrenta al construir una distancia es en términos de qué se espera proximidad entre sujetos. Y eso genera una cadena de subpreguntas del tipo:

¿Son más próximos un individuo y una individua de 33 años o una individua de 33 y otra de 45?

Las dos entradas restantes de la serie (una sucia, rápida y práctica; la otra más especulativa) van sobre opciones disponibles para atacar (nótese que digo atacar y no resolver) el problema.

Distancias (II): las distancias no son distancias

Una distancia, Wikipedia dixit, sobre un conjunto $latex X$ es una función $latex d$ definida sobre $latex X \times X$ que toma valores en los reales $latex \ge 0$ y que cumple:

  1. $d(a,b) = 0 \iff a = b$
  2. $d(a,b) = d(b,a)$
  3. $d(a,c) \le d(a, b) + d(b, c)$

En la práctica, sin embargo, he encontrado violaciones tanto de (1) como de (2). ¿A alguien se le ocurren ejemplos?

Sin embargo, (3) se mantiene. Sin (3) todo se volvería una locura. De hecho, obtener resultados razonable usando distancias significa particularmente que esas distancias cumplen (3).

Distancias (I): el planteamiento del problema

Me han pedido (vía Twitter) que desarrolle cosas que tengo por ahí desperdigadas (p.e., en las notas de esos cursos que ya no daré y puede que en algunas entradas viejunas de este blog) sobre distancias.

¿Por qué son importantes las distancias? Por un principio que no suele ser explicitado tanto como merece en ciencia de datos: si quieres saber algo sobre un sujeto, busca unos cuantos parecidos y razona sobre ellos.

Qué métodos estadísticos utilizar si el pan de tus hijos depende de que las p sean pequeñajas

Según Methods Matter: P-Hacking and Publication Bias in Causal Analysis in Economics, las variables instrumentales (para estas, en particular, véase esto) y las diferencias en diferencias:

Applying multiple approaches to over 21,000 hypothesis tests published in 25 leading economics journals we find that the extent of p-hacking and publication bias varies greatly by method. IV (and to a lesser extent DID) are particularly problematic.

Es curioso que se estudie también la regresión con discontinuidades y que no acabe en el podio. Sospecho que es tan cantosa que no pasa los filtros de los editores y revisores.

Intervalos de confianza y la velocidad de la luz

La interpretación puramente frecuentista de los intervalos de confianza es que el 95% de ellos contendrán el valor de interés en cuestión. Veamos qué nos cuenta al respecto la historia de la medición de la velocidad de la luz contemplada a través de la lectura de Determining the Speed of Light (1676-1983): An Internalist Study in the Sociology of Science primero en forma tabular (nota: en la fuente original hay una tabla más extensa de la que esta es resumen),