Estadística

Una versión aún más sencilla

… que la de “Algoritmos” y acatarrantes definiciones de “justicia”. Que es casi una versión de la anterior reduciendo la varianza de las betas.

Las dos poblaciones de interés tienen una tasa de probabilidad (o de riesgo, en la terminología del artículo original) de .4 y .6 respectivamente. Aproximadamente el 40% de los primeros y el 60% de los segundos tienen y = 1.

El modelo (el algoritmo) es perfecto y asigna a los integrantes del primer grupo un scoring de .4 y a los del segundo, de .6.

To IRLS or not to IRLS

A veces tomas un artículo de vaya uno a saber qué disciplina, sismología, p.e., y no dejas de pensar: los métodos estadísticos que usa esta gente son de hace 50 años. Luego cabe preguntarse: ¿pasará lo mismo en estadística con respecto a otras disciplinas?

Por razones que no vienen al caso, me he visto en la tesitura de tener que encontrar mínimos de funciones que podrían cuasicatalogarse como de mínimos cuadrados no lineales. Y por algún motivo, pareciere que no hubiese en el mundo un algoritmo de ajuste que no fuese IRLS. Que tiene una gran tradición en estadística; es, de hecho, la base de la optimización propuesta por Nelder y McCullagh en 1972.

Análisis estadístico de mezclas

No es algo que ocurra habitualmente. Creo que conozco a alguien que me dijo que lo tuvo que hacer una vez. Pero podría ocurrir en algún momento que tuvieses que analizar mezclas, es decir, situaciones experimentales en las que lo importante es la proporción de ciertos ingredientes (con la restricción obvia de que dichas proporciones suman la unidad).

Para más datos, Mixture Experiments in R Using mixexp, que describe el paquete de R mixexp.

La probabilidad de que el parámetro esté en el intervalo de confianza es .95

Si dices lo anterior, corres el riesgo de que un estadístico gruñón frunza mucho el ceño.

Hace muchos, muchos años, las gentes ávidas de saber más acudieron al tabernáculo donde se congregaban los sapientísimos estadísticos frecuentistas implorándoles una herramienta con que estimar el error de sus estimaciones puntuales. Estos cavilaron luengamente y décadas después entregaron a los representantes de los hombres, reunidos en el ágora, unas tablas de piedra que tenían grabadas a cincel la teoría de los intervalos de confianza. Pero, les advirtieron, los intervalos de confianza no son lo que vosotros queréis sino otra cosa y a quien ose interpretarlos torcidamente le pasará lo que a aquella señora que comió la manzana inadecuada: será expulsado del paraíso de la teoría como Dios manda.

¿Lineal o logística?

Hay cosas tan obvias que ni se plantea la alternativa. Pero luego va R. Gomila y escribe Logistic or Linear? Estimating Causal Effects of Treatments on Binary Outcomes Using Regression Analysis que se resume en lo siguiente: cuando te interese la explicación y no la predicción, aunque tu y sea binaria, usa regresión lineal y pasa de la logística.

Nota: La sección 4.2 de An Introduction to Statistical Learning de se titula precisamente Why Not Linear Regression?

WoE,... pero ¿y las interacciones?

Esto del WoE he tenido que aplicarlo (de manera no estándar, además) en alguna ocasión. Pero forzado por las circunstancias (que, concretamente, eran el misteriosísimo y no siempre conforme a lo que cabría esperar que hace ranger de las variables categóricas). Digamos que a veces toca, pero no es tampoco algo de lo que enorgullecerse.

Pero cuando escucho o leo a los apologetas del WoE, siempre me pregunto mucho por lo que tendrán que decir sobre la pérdida de información en términos abstractos y, en otros más concretos, qué ocurre con las interacciones.

Comparación y selección de modelos bayesianos

En el mundo bayesiano existen, cuando menos, dos escuelas:

  • La flowerpower, que sostiene que los modelos bayesianos son subjetivos y, por lo tanto, inasequibles a la confrontación con la realidad objetiva.
  • La de los que tienen un jefe que les paga un salario, al que le da igual si los modelos son bayesianos o no pero a quien le interesa por encima de todo saber si representan razonablemente el proceso subyacente.

Los segundos cuentan con referencias como Comparison of Bayesian predictive methods for model selection. Es un artículo, en cierto modo, desasosegadoramente antibayesiano: miradlo y encontraréis en él cosas que se parecen demasiado a la validación cruzada, al RMSE, etc.

El "método delta", ahora con NIMBLE

NIMBLE ha sido uno de mis más recientes y provechosos descubrimientos. Mejor que hablar de él, que otros lo harán mejor y con más criterio que yo, lo usaré para replantear el problema asociado el método delta que me ocupó el otro día.

Casi autoexplicativo:

library(nimble)

src <- nimbleCode({
    T_half <- log(.5) / k
    k ~ dnorm(-0.035, sd = 0.00195)
})

mcmc.out <- nimbleMCMC(code = src,
    constants = list(),
    data = list(), inits = list(k = -0.035),
    niter = 10000,
    monitors = c("k", "T_half"))

out <- as.data.frame(mcmc.out)

# hist(out$T_half), sd(out$T_half), etc.

Cosas:

GoF para modelos bayesianos

Existe una muy perezosa escuela de pensamiento que sostiene que dado que las probabilidades son subjetivas, cualquier modelo y, en particular, los bayesianos, como expresión de la subjetividad de sus autores, no necesita ser contrastado con la realidad. Porque, de hecho, la realidad no existe y es una construcción que cada cual hace a su manera, deberían añadir.

Existe, por supuesto, una escuela realista tan mayoritaria que ni siquiera es consciente de que lo es. Basta leer la primera página de Statistical Modeling: The Two Cultures para hacerse una idea muy clara de a lo que me refiero.

"Estadística Básica Edulcorada"

Quiero contribuir a dar a conocer el libro Estadística Básica Edulcorada de Alejandro Quintela.

Debería, se supone, hacer una crítica de lo que publico, pero lo omitiré en esta ocasión porque, para eso, tendría que haberlo leído con más detenimiento en lugar de simplemente hojearlo deteniéndome en los capítulos más entretenidos. Lo cual significa que sí que los tiene: de hecho, está repleto de ejemplos más o menos curiosos, problemas y paradojas más o menos conocidas, que tienen un valor en sí mismas al margen de las secciones teóricas más áridas.

¿Están los hogares preparados para una nueva recesión?

La respuesta es evidente: unos sí; otros, no. Pero en sitios como este se argumenta desde el promedio.

Que si uno se come un pollo y otro ninguno, son los estadísticos —precisamente, los estadísticos— los que dicen que se han comido medio cada uno. ¡Ya!