Estadística

P-valores y decisiones

Los números de esta entrada son reales aunque disfrazados: proceden de un proyecto real. Para medir la efectividad de una serie de modelos que hemos creado en Circiter, hemos pedido al cliente lo de siempre: que parta la lista de sujetos en dos al azar para después poder medir los éxitos y fracasos usando dos procedimientos distintos.

Pero como tenemos dudas acerca del proceso de partición —que no controlamos nosotros— hemos medido el número de éxitos y fracasos en cada uno de los grupos en una prueba previa. Esperábamos que las proporciones fuesen similares en ambos grupos y hemos obtenido esto:

La población envejece pero, ¿envejecen también los grupos de edad?

La pregunta es relevante porque en demografía, epidemiología y otras disciplinas entre las que no se suele contar la economía, se suele agrupar la población en grupos de edad (y/u otras variables relevantes). Son habituales los grupos de edad quinquenales y la pregunta es: ¿son homogéneos dichos grupos de edad a lo largo del tiempo?

No es una pregunta baladí: ha dado lugar a noticias como Why So Many White American Men Are Dying que no, no se explican por la desesperación o por la epidemia de opioides sino por el envejecimiento relativo de los grupos de edad en cuestión. En EE.UU., claro, no en España.

Sobre los coeficientes de los GLM en Scikit-learn

Pensé que ya había escrito sobre el asunto porque tropecé con él en un proyecto hace un tiempo. Pero mi menoria se había confundido con otra entrada, Sobre la peculiarisima implementacion del modelo lineal en (pseudo-)Scikit-learn, donde se discute, precisamente, un problema similar si se lo mira de cierta manera o diametralmente opuesto si se ve con otra perspectiva.

Allí el problema era que Scikit-learn gestionaba muy sui generis el insidioso problema de la colinealidad. Precisamente, porque utiliza un optimizador ad hoc y no estándar para ajustar el modelo lineal.

Los factores de Bayes son las hamburguesas veganas

Si eres vegano, vale, come tu lechuga y tu berenjena. Pero, ¿qué necesidad tienes de hamburguesas veganas? ¿Y a qué viene ufanarte de que saben casi igual?

[Nota: el párrafo anterior está escrito en condicional y aplica a ciertos veganos, entrellos alguno que conozco.]

Siempre he visto todo lo que rodea a los factores de bayes un tufillo a hamburguesa vegana. Es decir, un intento por reproducir lo más fidedignamente posible aquello que —¿por razones metodológicas?— rechazamos.

A más gripe, ¿menos mortalidad? En determinados submundos frecuentistas, sí

Estos días he tenido que adaptar y ejecutar con datos españoles una serie de modelos para medir la virulencia de diversos subtipos de gripe. Y todo bien, salvo que para uno de ellos y determinados grupos de edad… a mayor prevalencia, menor mortalidad. ¡Estupendo!

Todo sucede porque un coeficiente que debería haber sido necesariamente positivo fue estimado como negativo (además, significativamente).

Y el coeficiente tenía el signo cambiado (¡error de tipo S!) debido a una serie de problemas sobradamente conocidos:

Análisis y predicción de series temporales intermitentes

Hace tiempo me tocó analizar unas series temporales bastante particulares. Representaban la demanda diaria de determinados productos y cada día esta podía ser de un determinado número de kilos. Pero muchas de las series eran esporádicas: la mayoría de los días la demanda era cero.

Eran casos de las llamadas series temporales intermitentes.

Supongo que hay muchas maneras de modelizarlas y, así, al vuelo, se me ocurre pensar en algo similar a los modelos con inflación de ceros. Es decir, modelar la demanda como una mixtura de dos distribuciones, una, igual a 0 y otra >0, de manera que la probabilidad de la mixtura, $latex p_t$, dependa del tiempo y otras variables de interés.

DLMs

O Distributed Lag Models (véase, por ejemplo, dLagM).

Son modelos para estimar el impacto de una serie temporal sobre otra en situaciones como la siguientes:

  • Una serie mide excesos de temperaturas (en verano).
  • La otra, defunciones.

Existe un efecto causal (débil, pero medible) de la primera sobre la segunda. Pero las defunciones no ocurren el día mismo en que ocurren los excesos de temperaturas, sino que suelen demorarse unos cuantos días.

Gente que toma la causalidad en vano

Me refiero a los autores de El impacto de Airbnb en el mercado de vivienda de Barcelona, que a partir de datos puramente observacionales y en un artículo de apenas 1500 palabras, mencionan la causalidad siete veces. Además, escriben joyas como

[N]uestra investigación se basa en un modelo de econometría lineal (y no de econometría espacial) ya que nuestro objetivo principal es hacer un análisis causal robusto.

Ya sabes: si quieres un análisis causal robusto, el modelo lineal (chupatesa, Pearl).

¿Tienes un sistema predictivo guay? Vale, pero dame los dos números

No, no me vale que me digas que aciertas el 97% de las veces. Dime cuántas veces aciertas cuando sí y cuántas veces aciertas cuando no.

Si no, cualquiera.

Nota: estaba buscando la referencia a la última noticia de ese estilo que me había llegado, pero no la encuentro. No obstante, seguro, cualquier día de estos encontrarás un ejemplo de lo que denuncio.