Estadística

Goodhart, Lucas y todas esas cosas

Como me da vergüenza que una búsqueda de Goodhart en mi blog no dé resultados, allá voy. Lo de Goodhart, independientemente de lo que os hayan contado, tiene que ver con

es decir, un gráfico causal hiperbásico. Si la variable de interés y es difícil de medir, resulta tentador prestar atención a la variable observable x y usarla como proxy. Todo bien.

Pero también puede interesar operar sobre y y a cierta gente le puede sobrevenir la ocurrencia de operar sobre x con la esperanza de que eso influya sobre y.

Las tres culturas (en LUCA)

Ayer salió publicada una entrada de blog mía en LUCA, i.e., aquí. Pero vamos, como si la hubiese escrito aquí.

Nota: La ortotipografía (particularmente del título de la entrada) no fue cosa mía.

Enlaces parasociológicos

Tenía tan bien guardados en el disco duro una serie de enlaces de interés parasociológico que no había forma humana de dar con ellos.

Para que no me vuelva a pasar y por su potencial interés para otros, los cuelgo aquí.

El primero de ellos (que no sé por qué lo guardé) son las diapositivas de una charla acerca de cómo transformar porcentajes de votos en escaños en España.

Los otros tres se refieren a la metodología que utiliza la gente de electionforecast.co.uk:

ABC (II)

Más sobre lo de ayer. O más bien, una justificación por analogía.

Con monedas.

Tiras una moneda 100 veces y obtienes 60 caras. Tienes una priori $latex B(a,b)$ (beta). Tomas una muestra de valores $latex p_i$ con esa distribución y para cada una de ellas repites el experimento, es decir, obtienes lo que en R se expresaría de la forma

rbinom(1, 100, p[i])

Si te quedas los valores $p_i$ tales que esa simulación es 60, enhorabuena, tienes una muestra de la distribución a posteriori.

ABC (I)

Que quiere decir approximate Bayesian computation. Es un truco para pobres y desafortunados que no pueden quitarle la A a BC y usar directamente cosas como Stan o similares. El que no quiera prioris, además, puede usar el ABC para estimar la forma de la verosimilitud alrededor de una estimación puntual.

Por supuesto, el objetivo es obtener una estimación de la posteriori para poder medir la incertidumbre de parámetros, etc. La idea es que se dispone de unos datos, $latex X$ y un mecanismo de generación de datos $latex X^\prime = f(\theta)$, donde $latex \theta$ es un vector de parámetros.

"Embeddings" y análisis del carrito de la compra

Escribiendo la entrada del otro día sobre embeddings, no se me pasó por alto que la fórmula

$$ \frac{P(W_i,C_i)}{P(W_i)P(C_i)}$$

que escribí en ella es análoga al llamado lift (¿es el lift?) del llamado análisis del carrito de la compra, i.e., el estudio de productos que tienden a comprarse juntos (véase, por ejemplo, esto).

Lo cual me lleva a sugerir mas no escribir una entrada en la que se rehagan este tipo de análisis usando embeddings: los ítems como palabras, los carritos como textos, etc. Si alguien tiene tiempo y le sale algo potable, que avise y lo enlazo aquí.

Planes de búsqueda y rescate con R

Existe un paquete muy curioso en CRAN, rSARP para diseñar, optimizar y comunicar la evolución de planes de búsqueda y/o rescate (p.e., de un niño desaparecido en un monte).

Es particularmente interesante porque este tipo de problemas lo tienen todo: desde distribuciones a priori (sobre dónde es más probable encontrar lo que se busca) hasta la decisión final (explórese tanto aquí y tanto allá) teniendo en cuenta restricciones de tiempo y recursos.

Recordatorio: ideas para futuros TFMs de "ciencia de datos"

Todos los años me toca proponer potenciales TFMs para mis alumnos de donde quiera que sean. Para no olvidarme, anoto aquí esta: bajar el histórico de barómetros del CIS (¿será posible?) y las preguntas que entran a la cocina de la intención de voto. Con ellas, crear un modelo que lo prediga.

Bonus: identificar un cambio estructural tras la entrada de Tezanos al CIS.