Estadística

Recordatorio: ideas para futuros TFMs de "ciencia de datos"

Todos los años me toca proponer potenciales TFMs para mis alumnos de donde quiera que sean. Para no olvidarme, anoto aquí esta: bajar el histórico de barómetros del CIS (¿será posible?) y las preguntas que entran a la cocina de la intención de voto. Con ellas, crear un modelo que lo prediga.

Bonus: identificar un cambio estructural tras la entrada de Tezanos al CIS.

¿Funcionan los programas sociales?

En España estamos acostumbrados a que los programas sociales se implementan y ya. Se convierten, como la semana santa o las navidades, en fenómenos culturales que, simplemente, están ahí (p.e., el PER) y tienen que estarlo necesariamente.

En otros países se evalúan, se miden y cabe preguntarse: ¿funcionan?

Pues en otros sitios donde se miden esas cosas, se han obtenido números como estos (que es de donde traduzco):

  • Tal vez el 80% de los que se han medido usando técnicas rigurosas y con una muestra suficiente no funcionan, es decir, producen un efecto que compense el coste.
  • Tal vez un 1-10% tiene efectos negativos.
  • Los proyectos que no han sido medidos son probablemente peores (porque se tiende a investigar más los más promisorios).

Lo anterior tiene, no obstante, una lectura positiva: ¡el ~20% funcionan! Es decir, que si este tipo de proyectos se evaluasen tempranamente y pudiesen ser cancelados de no funcionar, aplicando una especie de metáfora del reinforcement learning, en unos años casi todos serían buenos.

Como no podemos medir X, usamos Y; pero luego, en las conclusiones, no criticamos Y sino X

Ayer estuve leyendo un artículo (arg, y perdí la referencia; pero da igual para la discusión, porque es genérica) en el que trataba de atribuir diferencias de mortalidad a diversas causas: diabetes, tabaco, alcohol,… y SES (estado socioeconómico).

El gran resultado más reseñable (por los autores) era que un SES bajo implicaba nosecuántos años menos de vida, incluso descontando el efecto del resto de los factores (y no recuerdo si estudiaban las correlaciones entre ellos, etc., como se debe en un estudio con pretensiones causales).

¿Por que slt-ear si puedes stR-ear?

La función stl (véase aquí un ejemplo de uso). Pero tiene sus limitaciones.

El paquete stR la extiende y permite, entre otras cosas, introducir distintos tipos de estacionalidades (p.e., anuales y semanales).

La reedición del sueño de Laplace

Dejó escrito Laplace:

Podemos mirar el estado presente del universo como el efecto del pasado y la causa de su futuro. Se podría concebir un intelecto que en cualquier momento dado conociera todas las fuerzas que animan la naturaleza y las posiciones de los seres que la componen; si este intelecto fuera lo suficientemente vasto como para someter los datos a análisis, podría condensar en una simple fórmula el movimiento de los grandes cuerpos del universo y del átomo más ligero; para tal intelecto nada podría ser incierto y el futuro, así como el pasado, estarían frente a sus ojos.

kamila: Clústering con variables categóricas

La codificación de las variables categóricas en problemas de clústering es la fuente de la mayor parte de los problemas con que se encuentran los desdichados que se ven forzados a aplicar este tipo de técnicas.

Existen algoritmos que tratan de resolver el problema sin necesidad de realizar codificaciones numéricas. kamila es un paquete de R que implementa uno de ellos. El artículo que lo acompaña, A semiparametric method for clustering mixed data aporta los detalles, que en resumen son:

Que no, que es imposible esconder medio millón de muertos (y que la cordialidad está de más)

Esta entrada viene a cuento de esta entrada, Cuidado con los estudios científicos que dicen cosas raras, raras en Malaprensa. Que hay que leer para entender lo que sigue.

A ver. No, ese estudio no dice cosas raras. Dice cosas que a los que os ganamos un porcentaje no pequeño del pan contando muertos nos da una mezcla de risa y rabia. Porque en España mueren unas 1000 personas al día (1200-1400 en invierno y 700-800 en verano) y medio millón de muertos de más en 5 años son casi 300 fallecimientos diarios más. Que se notan mucho, muchísimo.

Curso de estadística aplicada con Stan: ejercicio 1

A primeros de julio impartí un curso de estadística bayesiana aplicada con Stan. Tengo que examinar a los alumnos y he aquí el primero de los ejercicios:

En un país, se extrae una muestra de 2000 hombres y mujeres con la siguiente distribución:

men   <- 170 + 3 * rt(1000, 6)
women <- 160 + 2 * rt(1000, 5)
heights <- c(men, women)

Ajusta una distribución (una mezcla de dos distribuciones de Student) usando los datos anteriores, i.e., heights. Puedes suponer conocidos:

  • Los pesos de la mezcla (0.5) cada uno.
  • Que los grados de libertad de las t’s están entre 3 y 8 aproximadamente.
  • Experimenta con otros tamaños muestrales y comenta los resultados obtenidos (y los tiempos de ejecución).

Nota: este problema está motivado por una aplicación real: el ajuste de distribuciones de pérdida en banca y seguros. Típicamente, se mezclan dos distribuciones, una para la cola de la distribución y otra para el cuerpo. Hay técnicas frecuentistas (p.e., EM) para resolver estos problemas. Pero me parecen menos naturales y menos flexibles que la ruta 100% bayesiana.

Las tres culturas

Breiman habló de las dos. Dice, y tiene razón, que:

Según él, la estadística tradicional rellena la caja negra con:

¡Aburrido, aburrido, aburrido! Aburrido y limitado (aunque, hay que admitirlo, útil en ocasiones muy concretas). Breiman sugiere sustituir las cajas negras que encontramos en la naturaleza por otras cajas negras conceptuales:

Que es aún más aburrido y patrimonio, además, de toda suerte de script kiddies.

La tercera cultura reemplaza la caja negra por un modelo generativo que simula el comportamiento de la naturaleza (i.e., del sistema generador de números aleatorios pero con estructura). Y usa Stan (o sus alternativas) para estimar, predecir y, en última instancia, facilitar decisiones informadas.