Estadística

¿Qué catástrofes cabe esperar de las pruebas estadísticas con poca potencia?

Desde cierto punto de vista, lo ideal a la hora de realizar una prueba estadística es que:

  • El efecto sea grande.
  • La variación de los sujetos sea pequeña.
  • El tamaño de la muestra sea generoso.

Pero solo bajo cierto punto de vista: todas las pruebas estadísticas en que pasa eso ya se han hecho antes. Llevamos cientos de años haciendo ciencia y billones de euros invertidos en ella. Lo que nos enseñan las pruebas estadísticas con un SNR (signal to noise ratio) y posibilidad de extraer nuevas observaciones a bajo coste, ya lo sabemos desde hace tiempo. Lo que queda por averiguar de ese antílope del que ya se han saciado la manada de leones que lo cazó son las vísceras, tendones y huesos que roen las hienas. Quienes se dedican a la ciencia están abocados, por aquello de la originalidad, a estudiar problemas en los que algunas de las condiciones anteriores deja de cumplirse. Es decir, muchos de los resultados publicados han estudiado datos en los que:

Más sobre extensiones (bayesianas, pero no necesariamente) del t-test

En Improving Research Through Safer Learning from Data, Frank Harrell, junto con otros consejos muy provechosos para aquellos investigadores que tengan un compromiso más serio con la rectitud metodológica que con el desarrollo de su carrera profesional, menciona a modo de ejemplo una solución propuesta por Box y Tiao (en el tercer capítulo de esto) al problema del t-test en el caso de que no rija la hipótesis de normalidad. Más propiamente, en casos en los que se sospecha que la desviación con respecto a la normalidad lo es en términos de la curtosis (y no la asimetría).

De cómo la estadística bayesiana ha descompuesto la solución a un problema que la estadística clásica tenía plusquamsolucionado

I.

Voy a plantear el problema del día en el contexto más simple y familiar para la mayoría que se me ocurre: una ANOVA para comparar dos tratamientos. Se puede representar de la forma

$$y_i \sim \alpha + \beta_{T(i)} + \epsilon$$

donde $T(i)$ es el tratamiento, $A$ o $B$, que recibe el sujeto $i$. Parecería que el modelo estuviese sugiriendo determinar tres parámetros, $\alpha$, $\beta_A$ y $\beta_B$, correspondientes al efecto sin tratamiento y los efectos adicionales de los tratamientos $A$ y $B$. Sin embargo, si $\hat{\alpha}$, $\hat{\beta}_A$ y $\hat{\beta}_B$ es una solución, también lo es $\hat{\alpha} + \lambda$, $\hat{\beta}_A - \lambda$ y $\hat{\beta}_B - \lambda$ para cualquier $\lambda$. ¡No hay solución única (sino, más bien, una recta entera de soluciones)!

Tutorial de numpyro (I): modelos probabilísticos

I.

Las distintas disciplinas estudian aspectos diferentes de la realidad. Para ello crean modelos. Un modelo es una representación teórica y simplificada de un fenómeno real. Por un lado, el territorio; por el otro, el mapa.

Los físicos modelan cómo oscila un péndulo y se permiten obviar cosas como el rozamiento del aire. Los economistas, la evolución del PIB o la inflación. Los biólogos, la absorción de una determinada sustancia por un tejido. Los ingenieros, el comportamiento aerodinámico de un prototipo. Etc.

Coeficientes "no identificables": un ejemplo y sus consecuencias

Hoy voy a abundar sobre el modelo 3PL que ya traté el otro día. En particular voy a contrastar críticamente varios modelos alternativos sobre los mismos datos.

I.

El modelo que implementé (aquí) puede describirse así:

$$r_{ij} \sim \text{Bernoulli}(p_{ij})$$ $$p_{ij} = p(a_i, d_j, …)$$ $$a_i \sim N(0, 1)$$ $$d_j \sim N(0, 1)$$ $$\dots$$

donde

$$p = p(a, d, \delta, g) = g + \frac{1 - g}{1 + \exp(-\delta(a- d))}$$

y $a_i$ y $d_j$ son la habilidad del alumno $i$ y la dificultad de la pregunta $j$ respectivamente. Nótese además cómo en $f$ estas dos variables intervienen solo a través de su diferencia, $a - d$.

El modelo 3PL, ajustado con numpyro

Tenía ganas de meterle mano al modelo 3PL de la teoría de respuesta al ítem. Había un par de motivos para no hacerlo: que viene del mundo de la sicometría, que es un rollo macabeo, y que sirve —en primera aproximación— para evaluar evaluaciones (preguntas de examen, vamos), un asunto muy alejado de mis intereses. Pero acabaron pesando más:

  • Que se trata de un modelo generativo en el que los coeficientes tienen una función —y por tanto, interpretación— determinada y prefijada. Es decir, un modelo ad hoc construido desde primeros principios y no usando herramientas genéricas —piénsese en las anovas o similares—.
  • Que exige métodos de ajuste específicos. Por ahí usan MV vía EM.
  • Que pide a gritos una aproximación bayesiana, sobre todo a la hora de prefijar la distribución de las habilidades de los alumnos.
  • Que, finalmente, puede aplicarse fuera del estrecho ámbito de la teoría de la respuesta al ítem.
  • Y, además, que es fácilmente generalizable.

El problema en el que el modelo 3PL se propone como solución es sencillo:

La paradoja de Lord, de nuevo

Escribí sobre la paradoja de Lord en 2013 y luego otra vez, tangencialmente, en 2020. Hace poco releí el artículo de Pearl sobre el tema y comoquiera que su visión sobre el asunto es muy distinta de la mía, voy a tratar de desarrollarla.

Aunque supongo que es generalizable, la llamada paradoja de Lord se formuló inicialmente al estudiar y comparar datos antes/después. En su descripción original de mediados de los 60, había niños y niñas a los que se había pesado en junio y en septiembre. El problema (y la paradoja) aparecían al tratar de modelar esa variación de peso según el sexo.

Paralelismos entre textos vía embeddings: el caso, por poner uno, de los evangelios de Mateo y Marcos

Hace un tiempo tuve que leerlo todo sobre cierto tema. Entre otras cosas, cinco libros bastante parecidos entre sí. Era una continua sensación de déjà vu: el capitulo 5 de uno de ellos era casi como el tres de otro, etc. Pensé que podría ser útil —y hacerme perder menos tiempo— poder observar el solapamiento en bloques —sígase leyendo para entender mejor el significado de lo que pretendía—.

En esta entrada voy a mostrar el resultado de mis ensayos sobre unos textos distintos. Los que me interesaban originalmente estaban en PDF y hacer un análisis más o menos riguroso exigía mucho trabajo de limpieza previo. Pensando en otros textos distintos que vienen a contar la misma historia se me ocurrió utilizar dos de los evangelios sinópticos (en particular, los de Mateo y Marcos).