Programación

Hoy he echado de menos Scala

Hoy he escrito

last.date <- max(Filter(function(x) format(x, "%m") == "03",
	all.filled.data$Date))

y he echado mucho de menos Scala.

Más sobre Scala:

  • Si yo fuera rey, todos los niños aprenderían Scala.
  • Al tipo que inventó Scala le gustan tanto o más los oneliners que a mí.
  • Todavía me llevo mal con el compilador.
  • La gente viene a Suiza y aprende el alemán malhablado de aquí; yo, ya véis, Scala. Soy así de sociable.
  • Detrás de Scala vendrá Spark.

Imágenes y magia

No sé si imagen y magia comparten la misma raíz. Lo que me consta es que la gente que procesa imágenes hace algo que me parece casi mágico. De mayor quiero ser como ellos.

Traigo aquí un ejemplo sobre técnicas para completar imágenes:

image_reconstruction

El artículo completo, Scene Completion Using Millions of Photographs, y mucho material auxiliar puede revisarse aquí.

Grid, Scala y arbolitos fractales

Inspirado por

  • los arbolitos que he visto esta mañana en mi semivuelta al lago de Zúrich,
  • las cosas que estoy leyendo últimamente sobre el paquete grid de R (p.e., grid graphics, de Murrell)
  • mi curso de scala y
  • este enlace

me he decidido a reescribirlo como Dios manda (y no como de primeras se le ocurriría a un neoingeniero al que solo le han enseñado MatLab y que, por lo tanto, tiene vetado el acceso a cualquier tipo de empresa tecnológica puntera). Me ha quedado así:

Todo el mundo habla de cadenas de Markov

Todo el mundo habla últimamente de cadenas de Markov. ¿No os habéis dado cuenta? ¿O seré yo el que saca a relucir el asunto venga o no al caso? Sea que se haya puesto de moda o que esté mi misma obsesión por el asunto sesgando mi impresión sobre sobre (me encanta escribir dos preposiciones seguidas) lo que la gente habla, es el caso que el otro día me comprometí a escribir sobre

¿Cinco años y salen sin programar?

Sí, hay gente que pasa cinco años en una de esas instituciones encopetadas que son las universidades y sale de ellas sin saber programar.

Aquí va un ejemplo. Es un fragmento de un currículo que me ha llegado recientemente. El tipo es economista, graduado en uno de los departamentos de la materia más reconocidos de Madrid. Dice así:

cv_informatica

Eso es todo lo que el tipo reconoce saber sobre algo parecido a la programación.

Colusión de anunciantes en perjuicio de navegantes

O algo así. Aunque alguno puede pensar que no es en su perjuicio sino en su beneficio. A saber.

Solo que con collusion (un plugin para el navegador) uno puede construir gráficos tales como

collusion

que significa lo que su leyenda dice y que aquí traduzco brevemente. Uno instala en plugin y comienza a navegar por internet. Al hacerlo, collusion detecta esos sitios con los que las páginas que uno visita comparte información a través de galletitas y similares. Algunos de esos sitios pueden ser inofensivos (al parecer, Renfe se ha enterado de que he entrado a marca.es) y otros, los marcados en rojo, pertecen a redes de anunciantes. Más propiamente, a redes de seguimiento de navegantes, que tratan de inferir su perfil para… proporcionarles anuncios a medida, supongo. Estos sitios no solo saben que uno ha aterrizado en una página determinada, sino que pueden seguirlo a través del resto de los sitios que comparten información con él. Por eso en la red que genera collusion aparecen nodos de centralidad elevada (¡hubs!) que corresponden a sitios que colocan sus galletitas por doquier (y previo pago).

El lenguaje de Wolfram (según Wolfram)

En el siguiente vídeo Wolfram habla del lenguaje de Wolfram. Siento repetirme, pero quiero dejar claro que puede haber un sesgo. Porque como no lo haya, el Sr. Wolfram me va a tener como admirador (y puede que hasta como cliente).

Mirad lo que cuenta:

¿Es o no casi increíble?

Predictores con varianza casi nula, inflación, loterías y línea de comandos

Hoy viernes vuelvo a traer a mis páginas cuatro enlaces interesantes. El primero de ellos es como las malas películas: un arranque espléndido, un planteamiento prometedor y, al final, humo. Pero no trata de chico-conoce-chica sino de qué hacer con esas variables que tienen una varianza casi nula (a la hora de crear modelos estadísticos, se entiende). Me llegó tan oportunamente que pensé que alguien que vela por mí desde lo alto me lo enviaba para sacarme de mi semanal atolladero. Pero no fue el caso.

Guarjolización de fotos con R

Inspirado en esto aunque con la intención de mejorar el horrible código adjunto, escribí el otro día esto:

library("biOps")
library("cluster")

# leo una foto usando readJpeg de biOps
# el objeto devuelto es un array mxnx3 dimensional
# la última dimensión es el rgb de cada pixel

tmp <- tempfile()
download.file("http://blog.guiasenior.com/images/Retrato_Garber.jpg", tmp)
x <- readJpeg(tmp)

# si quieres mostrar la foto como un gráfico...
#plot(x)

# convertimos el array 3D nxmx3 en uno 2D (nm)x3
# luego buscamos 5 clústers
# esencialmente, buscamos 7 "píxels representativos"
d <- dim(x)
clarax <- clara(array(x, dim = c(d[1] * d[2], d[3])), 7)

# reemplazamos cada rgb de cada cluster por su
# "píxel representativo" (medioide) correspondiente
rgb.clusters <- clarax$medoids[clarax$cluster,]

# convertimos la matriz resultante en un array 3D
# (invirtiendo la transformación anterior)
# y representamos gráficamente
plot(imagedata(array(rgb.clusters, dim = d)))

Obviamente, podéis cambiar la foto y hacer variar el número de clústers. Pero conviene recordar que: