Umbralistas vs antiumbralistas

Dentro de ese submundo de la estadística (¿o de la epidemiología?) que estudia qué es seguro y qué no y los riesgos para la salud de diversos productos o prácticas, existen dos familias de difícil reconciliación: los umbralistas y los antiumbralistas.

Sus posiciones pueden ilustrarse gráficamente así:

Las posiciones típicas de los umbralistas quedan resumidas aquí.

Los antiumbralistas suelen ser más mediáticos (a la prensa le encantan afirmaciones del tipo: ¡el alcohol causa X desde la primera gota!) y tienen más hinchada en las clases populares.

Vale, el modelo es y = f(x) + error y f es importante, pero lo que le da significado es y

Esta es una entrada sobre la semántica de los modelos que resume mi planteamiento en una discusión que tuve hace un tiempo en Twitter. La he buscado sin éxito, así que la resumo. Alguien —no recuerdo bien— quería explicar cómo hace AEMET las predicciones meteorológicas probabilísticas. Pero con un error de planteamiento. Venía a decir que una predicción meteorológica probabilística (p.e., la probabilidad de que mañana llueva en Madrid) no significa algo así como que de tantos días parecidos a los de hoy, al día siguiente llovió en tal proporción sino otra cosa distinta.

"Generalized random forests": una introducción

Los generalized random forests (GRF en lo sucesivo) han cobrado cierta relevancia recientemente porque una de sus potenciales variantes son los llamados causal forests: RRFF adaptados para medir el tamaño de una intervención causal.

Lo que voy a contar aquí es un resumen de lo que aprendí echándole un vistazo al artículo relevante de la cosa.

[Nota: voy a simplificar un poco con respecto a lo que aparecen en el artículo por aligerar la introducción; recuérdese: este es un mapa del territorio y el territorio en sí mismo.]

Cómo organizar un proyecto de análisis de datos: primeros pasos

Esta es una entrada básica orientada a quienes comienzan en el mundo del análisis de datos y se enfrentan a uno de sus primeros retos en solitario. Contiene consejos que no son de aplicación universal, dependen del contexto y están sometidos a revisión y adecuación a las circunstancias concretas. Cada maestrillo tiene su librillo y esta es una versión simplificada del mío.

Un proyecto vive un directorio

Un proyecto vive en un directorio. Proyecto nuevo, directorio nuevo. Con un nombre que lo identifique adecuadamente, etc. Importante: ¡sin espacios en el nombre! (Utilizar espacios en el nombre de directorios y ficheros es, aparte de enojoso en sí mismo, fuente de problemas; afortunadamente, es trivial evitarlos: nunca espacios en el nombre y ya.)

NannyML: ¿estima realmente la bondad de un modelo sin grupo de control?

Imaginemos que tenemos un modelo para resolver un problema de clasificación binaria. Supongamos, sin pérdida de generalidad (cámbiese lo que haya de cambiarse), que se trata de un árbol.

Ese árbol se entrena con datos Madrid y define $K$ grupos (nodos terminales) $G_1, \dots, G_K$ donde la probabilidad de acertar —estimada usando algún conjunto de validación— es $p_1, \dots, p_K$. Además, se conoce el tamaño $n_i$ de los grupos $G_i$ en Madrid.

CRPS

Hoy toca hablar del CRPS, o continuous ranked probability score, que es un tipo particular de scoring y que se usa para lo que se usan los scorings: comparar modelos y predicciones.

Imaginemos que alguien quiere predecir un determinado valor y que como no es un patán, tiene la gentileza de proporcionar la distribución del valor esperado (p.e., una $N(a, b)$). Resulta que el valor observado es $x_o$.

¿Cómo de buena es esa predicción? En principio, cuando más probable sea $x$ en términos de la función de probabilidad de la predicción, mejor será dicha predicción. Así que $p(x_o)$ —donde $p$ es la función de densidad de la predicción— podría ser un buen scoring. En la práctica se usa una versión de la anterior, $\log(p(x_o))$, pero viene a ser lo mismo.

Log scoring = máxima verosimilitud

Hay dos técnicas en estadística que son una sola. Pero como se usan en contextos aparentemente distintos, tienen una historia diferente, se tratan con un lenguaje particular, posiblemente en asignaturas de distinto año, etc. y nadie se ha molestado en tender puentes, se consideran, prácticamente inconmensurables cuando, en el fondo, son la misma cosa.

Me refiero al llamado log scoring (para seleccionar entre modelos) y el principio de la máxima verosimilitud.

Algunos números sobre el cambio climático: servicios en la nube

Hay un reciente artículo en El País, Tu día a día en internet contamina al año tanto como un viaje en coche de más de 1.000 kilómetros, que es todo un ejercicio de valentía por parte de su autor: se enfrenta a la bestia parda de los periodistas que no es otra cosa que el de la correcta gestión de los órdenes de magnitud.

El titular, como se verá, es una sobrestimación (como poco, de un orden de magnitud); la entradilla, que dice

Cómo se calcula (vs cómo podría calcularse) la inflación

En resumidas cuentas, el INE calcula la inflación asi:

  1. A partir de la encuesta de presupuestos familiares, crea una cesta típica de productos.
  2. A partir de “datos de campo” evalúa la variación de los precios que forman parte de esa cesta de productos.

Comentarios:

  • Esa cesta de productos cuya evolución se sigue sería la que adquiriría una familia idealizada que no existe en absoluto. Por ejemplo, esa cesta puede sugerir que la familia idealizada consume un 0.1% de su presupuesto anual en comida de perros. Pero nadie consume un 0.1% de su presupuesto anual en eso: quienes tengan perro gastarán mucho más; los que, no, nada.

El principio de mediocridad como instrumento para estimar duraciones

Esta entrada trata de explicar cómo utilizar el llamado principio de mediocridad para la estimación de la duración de cosas cuando apenas se sabe nada al respecto. En ese sentido, extiende y fundamente lo que puede leerse aquí.

Planteamiento

Consideremos el conjunto $A$ de todos los pares de números (reales, que todo hay que decirlo) $0 < a < b$.

En todo lo que sigue, $b$ se interpretará como la duración total de algo (la existencia de la especie humana, el número de semanas que una obra teatral estará en cartel, etc.) y $a$ el momento en el que un observador ha contemplado la existencia de ese algo.