Sobre predicciones puntuales

Como tan a menudo se nos olvida, Taleb nos recuerda, breve y conciso, un par de cositas sobre las predicciones puntuales aquí. Además, casi todo lo que tiene que decir se resume en:

La regresión logística como el modelo más simple posible (que...)

Problema de regresión. Queremos $y = f(\mathbf{x})$. Lo más simple que podemos hacer: fiarlo todo a Taylor y escribir $ y = a_0 + \sum_i a_i x_i$.

Problema de clasificación. Lo más simple que podemos hacer, de nuevo: linealizar. Pero la expresión lineal tiene rango en $latex (-\infty, \infty)$. Solución, buscar la función $latex f$ más sencilla que se nos pueda ocurrir de $latex (-\infty, \infty)$ en $latex [0, 1]$. Entonces, $latex y = f(a_0 + \sum_i a_i x_i)$.

¿Cuándo falla lasso?

Una de las consecuencias funestas —tal vez inesperadas e imprevistas— de la actual arquitectura del mundo en que vivimos es que hay mucha gente (e instituciones, y libros, y artículos, y…) empeñada en enseñarte las cosas buenas y provechosas y muy especialmente en sus facetas que lo son más mientras que para aprender las malas dependes de la calle, la suerte y las pésimas compañías.

Así, te enseñan lasso y todo son parabienes.

Escalabilidad (y estructuras cooperativas)

Esta entrada es una breve nota (en parte, para mí) sobre On the Scalability of Cooperative Structures, un artículo sobre lo que el título indica (sí, que existen estructuras cooperativas como, p.e., las cooperativas o determinados sistemas políticos defendidos desde ciertas posiciones ideológicas, que tienen muy serios problemas de escalabilidad) y que a pesar de su interés no cabría en estas páginas si no fuese por este parrafito:

What I would like to do, instead, is introduce a concept to the discussion that I believe has the potential to elucidate several aspects in an extremely helpful way. The concept is that of “scalability.” It is drawn from the computer science literature, and it refers rather generally to the capacity of a system to take on increased workload by integrating additional resources (i.e. to “scale up”) without suffering degradation of performance.

RuleFit

El otro día me sentí culpable porque me preguntaron sobre RuleFit y tuve que hacer un Simón (aka, me lo estudio para mañana). Y como mañana fue antier, lo que sigue.

Hay descripciones estándar de RuleFit (p.e., esta o la del artículo original) pero me voy a atrever con una original de mi propio cuño.

Comenzamos con lasso. Lasso está bien, pero tiene una limitación sustancial: se le escapan las iteracciones (vale, admito que lo anterior no es universalmente exacto, pero lo es casi y eso me vale). Entonces, la pregunta es: ¿cómo introducir interacciones en lasso?

Bagging y boosting, hermanados

Ambas son heurísticas para construir modelos buenos a partir de la combinación de modelos malos. Con la diferencia —¿recordáis los condensadores de la física de bachillerato?— de que en un caso se colocan en paralelo y en el otro, en serie.

Entran Friedman y Popescu (algoritmo 1):

Y, tachán:

  • Bagging, si $latex \nu = 0$
  • Boosting otherwise.

Un mecanismo para fomentar la provisión privada de bienes púbicos

Tienes un proyecto que cuesta 1000 euros pero solo dispones de 100. Puede ser el típico proyecto de Patreon o Verkami; o ya puestos, proyectos como el de NadaEsGratis. O, ya puestos, un curso de ciencia de datos (cuya realización es contingente en que se alcance un volumen de alumnos mínimo).

Podrías, simplemente pedir 900 euros a voluntarios (como en los enlaces de más arriba). Pero podrías hacer algo mejor: ofrecer un contrato condicional en el que a los potenciales patrones:

Coronavirus: prevalencia, sensibilidad y especificidad

El otro día, por motivos que no vienen al caso, dibujé

que es una gráfica que muestra la posibilidad de tener aquello que quiera Dios que midan los tests del estudio ENECOVID-19 para aquellos a los que el test correspondiente ha dado positivo habida cuenta de su sensibilidad (85%) y especificidad (98%, que uso en lugar del menos creíble 99% que usa el estudio).

Efectivamente, cuando la prevalencia es baja, casi todos los tests positivos son falsos: corresponden a ese 2% de error que tiene el test sobre la población sana.

Explicación de modelos

Este es el primer año en el que en mi curso de ciencia de datos (hasta ahora en el EAE; a partir del año que viene, vaya uno a saber si y dónde) introduzco una sección sobre explicación de modelos.

Hay quienes sostienen que, mejor que crear un modelo de caja negra y tratar luego de explicar las predicciones, es recomendable comenzar con un modelo directamente explicable (p.e., un GLM). Por mucha razón que traigan, vox clamantis in deserto: hay y seguirá habiendo modelos de caja negra por doquier.