Sobre la función de riesgo en el análisis de la supervivencia

Tienes una función de supervivencia

y piensas que es posible aproximarla usando segmentos de exponencial usando primero una rejilla gruesa,

y luego cada vez más fina,

hasta que sean indistinguibles.

Las distintas aproximaciones son

$$ \hat{S}(t) = \exp\left(-\sum_{i \le n} \lambda_i \Delta - \lambda_n (t - t_n)\right)$$

donde $latex n$ es el índice del intervalo que contiene a $latex t$ los $latex \lambda_i$ son los coeficientes en los segmentos de exponencial. Esa expresión que converge a

¿Por qué el optimizador de una red neuronal no se va al carajo (como suelen L-BFGS-B y similares)?

Vale, admito que no funciona siempre. Pero una manera de distinguir a un matemático de un ingeniero es por una casi imperceptible pausa que los primeros realizan antes de pronunciar optimización. Un matemático nunca conjuga el verbo optimizar en vano.

[Una vez, hace tiempo, movido por una mezcla de paternalismo y maldad, delegué un subproblema que incluía el fatídico optim de R en una ingeniera. Aún le debe doler el asunto.]

"Poor Economics": el resumen

Leí hace un tiempo, antes de que concediesen el Nobel a sus autores y porque había oído hablar muy bien de él a un tipo que conozco, Poor Economics.

Es un libro muy deprimente y voy a explicar aquí por qué.

Advierto que escribo de memoria: ni he revisado el libro ni lo que de él anoté para este infrarresumen.

El libro tiene muchas páginas divididas en N+1 capítulos. Los N primeros describen muchos, muchísimos RCTs (¿en el orden de cientos?) agrupados por temas —que si microcréditos, que si redes para los mosquitos para prevenir la malaria,…— en un montón de países. Tienen un denominador común: nada funciona. Todo lo que se ensaya fracasa por los motivos más variopintos.

"The great reset"

La ciencia de datos es la ciencia de la extrapolación. Todas las técnicas que la componen tratan de eso: de como proyectar hacia el futuro el comportamiento pasado. Si funciona, es por las inercias que operan en lo físico, en lo sicológico, en lo conductual.

[La ciencia de datos puede (no necesariamente, pero puede) ser una extrapolación objetiva: de ahí que quienes denuncian su presunta amoralidad solo nos están haciendo saber una opinión: que el pasado no encaja con su personalísimo criterio ético.]

Optimización estocástica

R

Una de los proyectos en los que estoy trabajando últimamente está relacionado con un problema de optimización no lineal: tengo un modelo (o una familia de modelos) no lineales con una serie de parámetros, unos datos y se trata de lo que no mercería más explicación: encontrar los que minimizan cierta función de error.

Tengo implementadas dos vías:

  • La nls, que usa un optimizador numérico genérico para encontrar esos mínimos. (Nótese que uso nls y no nls porque esa función me queda muy corta).
  • La stan, donde especifico el modelo, introduzco una serie de prioris más o menos informativas según lo que sepa de mi problema y estimo la distribución a posteriori de mis parámetros.

Ambas tienen sus ventajas y desventajas. La una es rápida y la otra no; la una me da poca información sobre los parámetros y la otra, mucha; una me permite introducir mucha información a priori y la otra casi nada, etc.

Análisis (bayesiano) de pruebas con sensibilidad/especificidad desconocida

Esto tiene que ver con lo del estudio ENECOVID, por supuesto.

Esto tiene que ver con los ajustes que hay que realizar en los resultados por la menos que perfecta sensibilidad y especificidad.

Porque no basta con lo que diga el prospecto de los kits chinos.

Por eso es recomendable leer Bayesian analysis of tests with unknown specificity and sensitivity.

Coda: Cuando era matemático y comencé a estudiar estadística, me llamaba mucho la atención (por no decir que me escandalizaba) la alegría con la que estimadores sujetos a error de un modelo se insertaban como verdad divina en otro. Que es lo que aparentemente se hace cuando el estimador puntual de sensibilidad y especificidad copipega tal cual en las fórmulas del ajuste.

¿Estos son los argumentos para "un debate riguroso sobre las transferencias de renta"?

Eso, que he estado leyendo Un debate riguroso sobre las transferencias de renta, donde se anuncia que

A raíz de la pandemia ha vuelto al debate público la pregunta de cómo organizar nuestro estado del bienestar para proteger a los más vulnerables. Uno de los protagonistas del debate ha sido la idea de una renta –sea básica o mínima– que reduzca los efectos de la crisis económica y quizá también se convierta en una pieza permanente de nuestro sistema de prestaciones.

Micromuertes y coronavirus

[Esta entrada abunda en la que escribí hace nueve años sobre las micromuertes y sin la cual no se entiende.]

El concepto de micromuerte sirve para anclar y comparar adecuadamente riesgos diminutos. De acuerdo con la entrada que referencio arriba, una micromuerte equivale al riesgo (recuérdese: ¡promedio!) de caminar 15 km o conducir 250. Pasar una noche en el hospital consume 75 de ellos (por riesgo de contagios que no tengan que ver con el motivo de ingreso) y dar a luz, alrededor de 100.

¿Cómo pensar en la probabilidad de un evento?

[Esta entrada lo es, además de por su propio mérito, en preparación de la que habrá de ocurrir mañana o pasado.]

Así:

My father, Leonard Jimmie Savage, was an early advocate of subjective probability. He encouraged me from a young age to think of the probability of an event as the amount I would pay for a gamble that would pay $100 if the event occurred.

Sam Savage, 2004 (fuente)