Intervalos de confianza, intervalos de predicción

Contexto:

modelo <- lm(dist ~ speed, data = cars)

Intervalos de confianza:

head(predict(modelo, interval = "confidence"))
#        fit        lwr       upr
#1 -1.849460 -12.329543  8.630624
#2 -1.849460 -12.329543  8.630624
#3  9.947766   1.678977 18.216556
#4  9.947766   1.678977 18.216556
#5 13.880175   6.307527 21.452823
#6 17.812584  10.905120 24.720047

Intervalos de predicción:

head(predict(modelo, interval = "prediction"))
#        fit       lwr      upr
#1 -1.849460 -34.49984 30.80092
#2 -1.849460 -34.49984 30.80092
#3  9.947766 -22.06142 41.95696
#4  9.947766 -22.06142 41.95696
#5 13.880175 -17.95629 45.71664
#6 17.812584 -13.87225 49.49741

Creo que la diferencia (y el significado) es claro. Para todos los demás, esto.

"Para razonar rigurosamente bajo incertidumbre hay que recurrir al lenguaje de la probabilidad"

Así arranca este artículo, que presenta una extensión de XGBoost para predicciones probabilísticas. Es decir, un paquete que promete no solo una estimación del valor central de la predicción sino de su distribución.

La versión equivalente de lo anterior en el mundo de los random forests está descrito aquí, disponible aquí y mucho me temo que muy pronto voy a poder contar por aquí si está a la altura de las expectativas.

Sobre los peligros del "Tukey biweight"

Sigo con ajustes robustos. Y cosas que como matemático, me ponen muy nervioso.

Una de las maneras de hacer ajustes robustos es la de sustituir la función cuadrática por la biweight. Es decir, utilizar la función que aparece la derecha en

en lugar de la de la izquierda. O, dicho de otra manera, en lugar de tratar de minimizar

$$ \sum_i \rho(y_i - f_\alpha(x_i))$$

usando $latex \rho(x) = x^2$, que es la función que se representa a la izquierda y a la que estamos acostumbrados, usar la de la derecha. Que es la función biweight de Tukey.

Una versión aún más sencilla

… que la de “Algoritmos” y acatarrantes definiciones de “justicia”. Que es casi una versión de la anterior reduciendo la varianza de las betas.

Las dos poblaciones de interés tienen una tasa de probabilidad (o de riesgo, en la terminología del artículo original) de .4 y .6 respectivamente. Aproximadamente el 40% de los primeros y el 60% de los segundos tienen y = 1.

El modelo (el algoritmo) es perfecto y asigna a los integrantes del primer grupo un scoring de .4 y a los del segundo, de .6.

"Algoritmos" y acatarrantes definiciones de "justicia"

Lee Justicia: los límites de la inteligencia artificial… y humana y cuando acabes, te propongo un pequeño experimento probabilístico. Por referencia, reproduzco aquí los criterios de justicia del artículo que glosa el que enlazo:

Centrémonos en (B), sabiendo que, por simetría, lo que cuento se aplica también a (C).

Supongamos que tenemos dos grupos, cada uno de ellos de

n <- 1000000

personas para estar en las asíntotas que aman los frecuentistas. Estos grupos tienen distribuciones distintas de un factor de riesgo,

To IRLS or not to IRLS

A veces tomas un artículo de vaya uno a saber qué disciplina, sismología, p.e., y no dejas de pensar: los métodos estadísticos que usa esta gente son de hace 50 años. Luego cabe preguntarse: ¿pasará lo mismo en estadística con respecto a otras disciplinas?

Por razones que no vienen al caso, me he visto en la tesitura de tener que encontrar mínimos de funciones que podrían cuasicatalogarse como de mínimos cuadrados no lineales. Y por algún motivo, pareciere que no hubiese en el mundo un algoritmo de ajuste que no fuese IRLS. Que tiene una gran tradición en estadística; es, de hecho, la base de la optimización propuesta por Nelder y McCullagh en 1972.

Platón en el estercolero

Hoy nos han hablado unos matemáticos. Sí, de esos cuyas distribuciones extremales son Pareto porque yo lo valgo.

Alguien, que no yo, ha osado preguntar qué tal ajustaban los modelos. La respuesta, perifrástica nivel Yes, Minister, se resumía en un nos encantaría haber tenido ocasión de comprobarlo.

Efectivamente, las probabilidades son subjetivas en tanto que financiadas por la Fundación La Caixa.

Curvas de equiprobabilidad de la t bivariada

El otro día me entretuve pintando curvas de equiprobabilidad de la distribución de Cauchy (nota: debería haberlas llamado cuasicuasiconvexas en lugar de cuasiconvexas en su día). Pero la t es una_ cuerda tendida entre _la Cauchy y la normal y es instructivo echarles un vistazo a las curvas de equiprobabilidad según crecen los grados de libertad. Sobre todo, porque arrojan más información sobre la manera y el sentido en el que la t converge a la normal. Son:

Análisis estadístico de mezclas

No es algo que ocurra habitualmente. Creo que conozco a alguien que me dijo que lo tuvo que hacer una vez. Pero podría ocurrir en algún momento que tuvieses que analizar mezclas, es decir, situaciones experimentales en las que lo importante es la proporción de ciertos ingredientes (con la restricción obvia de que dichas proporciones suman la unidad).

Para más datos, Mixture Experiments in R Using mixexp, que describe el paquete de R mixexp.