Análisis Factorial

Análisis factorial e ideas que se resisten a morir

Estoy escribiendo mucho sobre métodos de reducción de la dimensionalidad estos días. Digamos que son gajes del oficio. Espero no resultar repetitivo.

La cuestión que me empuja a escribir hoy es que algunos a mi alrededor insisten, insisten e insisten en las bondades del análisis factorial y lo oportuno de su aplicación a un problema sobre el que no voy a dar más detalles. Es una técnica que jamás estudié propiamente y con la que el poco contacto que he tenido se ha limitado a echar una mano a algunos clientes en el pasado en algún análisis.

Varimax: lo que se gana, lo que se pierde

Hoy hablaremos de exploratory factorial analysis y en particular aprovecharé para dejar constancia de que dejo resuelta una duda que siempre me ha dado pereza resolver: qué se pierde —lo que se gana ya nos lo han contado por doquier— al realizar una rotación varimax.

Comencemos. Primero, voy a realizar un análisis factorial (exploratorio) basándome en ?varimax:

fa <- factanal( ~., 2, data = swiss, rotation = "none")
fa

# Call:
#   factanal(x = ~., factors = 2, data = swiss, rotation = "none")
#
# Uniquenesses:
#   Fertility      Agriculture      Examination        Education         Catholic Infant.Mortality
# 0.420            0.492            0.270            0.005            0.061            0.960
#
# Loadings:
#   Factor1 Factor2
# Fertility        -0.674   0.356
# Agriculture      -0.648   0.297
# Examination       0.713  -0.471
# Education         0.997
# Catholic         -0.178   0.953
# Infant.Mortality -0.104   0.169
#
# Factor1 Factor2
# SS loadings      2.419   1.373
# Proportion Var   0.403   0.229
# Cumulative Var   0.403   0.632
#
# Test of the hypothesis that 2 factors are sufficient.
# The chi square statistic is 20.99 on 4 degrees of freedom.
# The p-value is 0.000318

Usando factanal he creado dos factores sobre el conjunto de datos swiss y he optado por no usar nigún tipo de rotación.