Anaconda

Mi infraestructura para Python

Resumen:

  • He decidido usar RStudio como IDE para Python. RStudio no es el mejor IDE para desarrollar, pero es incomparablemente mejor que cualquier otro IDE para explorar, etc. Funciona muy bien y solo puede mejorar.
  • He decidido pasar de Jupyter. Los notebooks valen para lo que valen, pero no para lo que hago. En caso de necesidad, uso Rmarkdown con bloques de Python. De nuevo, funcionan muy bien y solo pueden mejorar.
  • Finalmente, he decidido pasar de Anaconda. Tiene incompatibilidades con RStudio. Particularmente, cuando los módulos de Python tratan de cargar shared libraries. Los módulos de Anaconda tienen el vicio de buscarlos dentro del directorio de instalación, pero al lanzar el intérprete de Python a través de reticulate, en Linux parece que los busca en el sistema (por debajo de /usr/lib y similares). Y todo se rompe mucho. Mucho y muy, muy feo.

Así que uso los Python (3.7 cuando puedo, otras versiones cuando me obligan) del sistema. Pero la instalación del sistema es mínima. He creado varios environments ad hoc (y dentro de un directorio ad hoc para ellos) y obigo a reticulate a usarlos (vía use_virtualenv()) según conveniencia. En ellos tengo todas las dependencias (de numpy para arriba).

rPython & Anaconda

R

Nota: publico hoy en inglés en atención al público potencial de la entrada.

rPython lets R users call Python code. Anaconda is a completely free enterprise-ready Python distribution for large-scale data processing, predictive analytics, and scientific computing. Not surprisingly, some users want to call Anaconda Python rather than their system’s default Python.

However, Anaconda is a very particular package: unlike most other packages, whose files are scattered in a diversity of locations, it is self contained in a single directory. This helps Anaconda solve some problems, like the library hell. It is intended to provide the same experience regardless of the specifics of the host system.