aproximaciones

Sobre sumas de cuadrados de normales con varianzas desiguales

En mi entrada anterior mencioné cómo la suma de cuadrados de normales, aun cuando tengan varianzas desiguales, sigue siendo aproximadamente $latex \chi^2$. Es el resultado que subyace, por ejemplo, a la aproximación de Welch que usa R por defecto en t.test. Puede verse una discusión teórica sobre el asunto así como enlaces a la literatura relevante aquí. Esta entrada es un complemento a la anterior que tiene lo que a la otra le faltan: gráficos.

Evaluación de trucos para multiplicaciones aproximadas

En Street Fighting Mathematics (leedlo) hay un capítulo en el que se discuten trucos para realizar mental y aproximadamente operaciones del tipo 3600 × 4.4 × 10^4 × 32. La recomendación es la siguiente: contar ceros primero, gestionar las cifras significativas después. En el caso anterior, el autor identifica 8 ceros (tres del 3600, cuatro del 10^4 y uno del 32), quedando como cifras significativas 3.6, 4.4 y 3.2. Para estas últimas, recomienda aproximarlas a 1, pocos (alrededor de 3) y 10.