Bayesianismo

Bayesianismo y frecuentismo bajo la óptica de la teoría de la decisión, y IV

[Esta es la cuarta y última (por el momento) de una serie de entradas sobre el tema que se anuncia en el título.]

En la tercera entrega de la serie se introdujo el frecuentismo como una particular manera de resolver el problema de minimización asociado a la expresión

$$L(\hat{\theta}) = \int_\theta \int_X L(\theta, \hat{\theta}) p(X | \theta) p(\theta) dX d\theta.$$

En esta entrada se introducirá el bayesianismo de manera análoga con el concurso del teorema de Fubini (que, recuérdese, permite conmutar las integrales):

Bayesianismo y frecuentismo bajo la óptica de la teoría de la decisión, III

[Esta es la tercera de una serie de cuatro o cinco entradas sobre el tema que se anuncia en el título.]

Terminó la segunda entrada de anunciando cómo la manera de operar con la expresión

$$L(\hat{\theta}) = \int_\theta \int_X L(\theta, \hat{\theta}) p(X | \theta) p(\theta) dX d\theta$$

determina las dos grandes corrientes dentro de la estadística. Para entender la primera, el frecuentismo, se debe reescribir la expresión anterior como

$$L(\hat{\theta}) = \int_\theta \left[\int_X L(\theta, \hat{\theta}) p(X | \theta) dX \right] p(\theta)d\theta$$

Bayesianismo y frecuentismo bajo la óptica de la teoría de la decisión, II

[Esta es la segunda de una serie de tres o cuatro entradas sobre el tema que se anuncia en el título.]

Terminó la primera entrada de la serie reconociendo que aún no se había entrado en materia estadística, que para ello habría que hablar de datos. Y, en efecto, la estadística principia cuando, por decirlo de manera sugerente aunque breve e imprecisa, $\theta$ genera unos datos $X$ que proporcionan pistas sobre su naturaleza.

Bayesianismo y frecuentismo bajo la óptica de la teoría de la decisión, I

[Esta es la primera de una serie de tres o cuatro entradas sobre el tema que se anuncia en el título.]

$\theta$ es un valor desconocido. Por algún motivo, necesitamos encontrar un valor $\hat{\theta}$ —que podríamos llamar de cualquier manera, pero que, por lo que sigue, será podemos convenir en denominar estimación de $\theta$— tal que minimicemos una determinada función de error

$$L(\theta, \hat{\theta}).$$

Por fijar ideas, un ejemplo: alguien nos puede haber dicho que ha pensado un número (entero) entre el 1 y el 10, $\theta$ y que nos dará un premio si lo acertamos, es decir, si proporcionamos un $\hat{\theta}$ y resulta que $\theta = \hat{\theta}$. Una función de error aplicable sería: