Brier

Exámenes probabilísticos

I.

Es habitual tener dos modelos $m_1$ y $m_2$ y querer compararlos. Supongamos que son modelos de clasificación binaria —aunque nada de lo que sigue cambia realmente si son de clasificación categórica en un sentido más amplio—; vamos a suponer también que son modelos probabilísticos, en el sentido de que no producen directamente una predicción sino una probabilidad que puede luego convertirse en una predicción de acuerdo con cierta regla (p.e., predecir la categoría más probable).

Scorings: interpolando (y extrapolando) entre el de Brier y el lineal

Rápidamente y para poner el limpio unas cosas que tenía en borrador. El scoring lineal del que me he ocupado en entradas anteriores (p.e., esta o esta) está asociado a un exponente $latex \lambda = 1$ y el de Brier, a $latex \lambda = 2$. Entre ambos (y a la derecha del 2) hay otros scorings posibles.

Una penalización de $latex (1-p)^\lambda$ (véanse las entradas enlazadas más arriba para averiguar a qué me refiero), un predictor tiene un incentivo para modificar su predicción para alcanzar un scoring más alto, salvo en el caso en que $latex \lambda = 2$, en el que le compensa ser lo más sincero posible.

Mejores predictores: un ejemplo (el de Brier)

La entrada de hoy casi me la escribe un comentarista (al que le estoy muy agradecido) ayer. Retomo el tema.

Ayer premiaba a cada predictor con $latex p(X)$, es decir, le daba $latex p$ punticos si ocurría $latex X$ y $latex 1-p$ punticos sin no ocurría. La cosa no cambia si nos alineamos con lo que está escrito por ahí y en lugar de premiar, penalizamos. Es decir, si en lugar de maximizar $latex p(X)$, buscamos minimizar $latex 1 - p(X)$. Nada cambia.