Ceros

Modelos de conteos con sobredispersión (con Stan)

R

Esta entrada muestra cómo afrontar (con Stan) un problema que encontré el otro día en un lugar que no puedo mencionar pero en el que sé que me leen (y los destinatarios sabrán que va por ellos).

El contexto es el siguiente: se hace un test A/B donde la variable de interés son unos conteos. Hay varios grupos (aquí los reduciré a dos) y los datos siguen aproximadamente (aquí omitiré la parte de la inflación de ceros) una distribución de Poisson. Pero solo aproximadamente: existe sobredispersión, es decir, la varianza de los datos excede su media.

Modelos con inflación de ceros y separación perfecta

Al estudiar problemas de conteos, la llamada inflación de ceros ocurre frecuentemente: los datos contienen más ceros de los que ocurrirían según las distribuciones habituales (Poisson, binomial negativa). Un modelo con inflación de ceros es una mezcla (mixtura) de un modelo de conteos y una distribución de Dirac (en cero).

Las técnicas habituales para resolverlos involucran (explícita o implícitamente) una estructura jerárquica de modelos: primero, uno (similar a una logística), separa las observaciones que corresponderían a la Dirac del resto. Un segundo modelo de conteos trata de ajustar el segundo.