ciencia de datos

Matrices de confusión, sensibilidad, especificidad, curva ROC, AUC y todas esas cosas

Esta entrada es una breve introducción a los conceptos indicados en el título. Está motivada por una pregunta que se formuló en Twitter acerca de la existencia o no de lo que voy a escribir en español y a que ninguna de las respuestas aportadas me satisfizo. Todos esos conceptos hacen referencia al estudio de la bondad de un modelo de clasificación (es decir, un modelo que trata de predecir una etiqueta (o una variable categórica, si se quiere) a partir de ciertos datos).

Un matemático visita los modelos de difusión (generativos)

Los modelos generativos —aunque aquí generativo se use en un sentido distinto del habitual en estas páginas— están de moda (véase esto o esto). Estas aplicaciones están basadas en una serie de técnicas que el siguiente diagrama (extraído de aquí) resume estupendamente: La más reciente de todas estas técnicas y la que subyace a las últimas y más sorprendentes aplicaciones es la de los llamados modelos de difusión. Les he estado echando un vistazo y esta entrada resume lo que he aprendido de ellos.

"Generalized random forests": una introducción

Los generalized random forests (GRF en lo sucesivo) han cobrado cierta relevancia recientemente porque una de sus potenciales variantes son los llamados causal forests: RRFF adaptados para medir el tamaño de una intervención causal. Lo que voy a contar aquí es un resumen de lo que aprendí echándole un vistazo al artículo relevante de la cosa. [Nota: voy a simplificar un poco con respecto a lo que aparecen en el artículo por aligerar la introducción; recuérdese: este es un mapa del territorio y el territorio en sí mismo.

Cómo organizar un proyecto de análisis de datos: primeros pasos

Esta es una entrada básica orientada a quienes comienzan en el mundo del análisis de datos y se enfrentan a uno de sus primeros retos en solitario. Contiene consejos que no son de aplicación universal, dependen del contexto y están sometidos a revisión y adecuación a las circunstancias concretas. Cada maestrillo tiene su librillo y esta es una versión simplificada del mío. Un proyecto vive un directorio Un proyecto vive en un directorio.

Mi apuesta para el larguísimo plazo: Julia

Larguísimo, arriba, significa algo así como 10 o 20 años. Vamos, como cuando comencé con R allá por el 2001. R es, reconozcámoslo, un carajal. Pocas cosas mejores que esta para convencerse. No dejo de pensar en aquello que me dijo un profesor en 2001: que R no podría desplazar a SAS porque no tenía soporte modelos mixtos. Yo no sabía qué eran los modelos mixtos en esa época pero, desde entonces, vine a entender y considerar que “tener soporte para modelos mixtos” venía a ser como aquello que convertía a un lenguaje para el análisis de datos en una alternativa viable y seria a lo existente.

Hayek vs "Machín Lenin"

Contexto: Una empresa tiene una serie de técnicos repartidos por todas las provincias que tienen que hacer visitas y reparaciones in situ a una serie de clientes dispersos. La empresa cuenta con un departamento técnico central que asigna diariamente y, fundamentalmente, con herramientas ofimáticas las rutas a cada uno de los técnicos. Alternativas tecnológicas: Machín Lenin: Unos científicos de datos usan algoritmos de enrutamiento para crear una herramienta que ayuda (o reemplaza total o parcialmente) al equipo técnico de las hojas de cálculo para generar rutas óptimas que enviar diariamente a los técnicos.

¿Qué modelas cuando modelas?

Ahora que estoy trabajando en el capítulo dedicado a la modelización (clásica, frecuentista) de mi libro, me veo obligado no ya a resolver sino encontrar una vía razonable entre las tres —¿hay más?— posibles respuestas a esa pregunta. La primera es yo modelo un proceso (o fenómeno), los datos llegan luego. Yo pienso que una variable de interés $latex Y$ depende de $latex X_i$ a través de una relación del tipo

Máxima verosimilitud vs decisiones

En Some Class-Participation Demonstrations for Introductory Probability and Statistics tienen los autores un ejemplo muy ilustrativo sobre lo lo relativo (en oposición a fundamental) del papel de la máxima verosimilitud (y de la estadística puntual, en sentido lato) cuando la estadística deja de ser un fin en sí mismo y se inserta en un proceso más amplio que implica la toma de decisiones óptimas. Se trata de un ejemplo pensado para ser desarrollado en una clase.

Sobre la "Carta de Derechos Digitales"

No cualquier ministerio sino precisamente el de economía (lo subrayo: es muy relevante para lo que sigue) ha colgado de su portal una (propuesta de) Carta de Derechos Digitales para su pública consulta. Se trata de un documento confuso, en el que se mezclan propuestas que afectan a ámbitos muy heterogéneos, desde el transhumanismo, [L]a ley regulará aquellos supuestos y condiciones de empleo de las neurotecnologías que, más allá de su aplicación terapéutica, pretendan el aumento cognitivo o la estimulación o potenciación de las capacidades de las personas.

Distancias (V): el colofón irónico-especulativo

Remato la serie sobre distancias con una entrega especulativa. Según se la mire, o bien nunca se ha hecho esa cosa o bien nunca ha dejado de hacerse. El problema es que ninguna de las propuestas desgranadas por ahí, incluidas las de mis serie, responde eficazmente la gran pregunta: ¿Son más próximos un individuo y una individua de 33 años o una individua de 33 y otra de 45?

Distancias (IV): la solución rápida y sucia

Prometí (d)escribir una solución rápida y sucia para la construcción de distancias cuando fallan las prêt à porter (euclídeas, Gower, etc.). Está basada en la muy socorrida y casi siempre falsa hipótesis de independencia entre las distintas variables $latex x_1, \dots, x_n$ y tiene la forma $$ d(x_a, x_b) = \sum_i \alpha_i d_i(x_{ia}, x_{ib})$$ donde los valores $latex \alpha_i$ son unos pesos que me invento (¡eh!, Euclides también se inventó que $latex \alpha_i = 1$ y nadie le frunció el ceño tanto como a mí tú ahora) tratando de que ponderen la importancia relativa que tiene la variable $latex i$ en el fenómeno que me interesa.