Comparaciones Múltiples

Ajustar o no ajustar, esta es la cuestión

Hoy traigo a colación dos artículos que dicen, en esencia, lo contrario. El primero, No Adjustments Are Needed for Multiple Comparisons dice… lo que su título indica. Su resumen plantea el asunto un tanto menos sucintamente:

Se recomienda realizar ajustes al realizar múltiples tests sobre grandes conjuntos de datos para evitar rechazar la hipótesis nula demasiado fácilmente. Desafortunadamente, al reducir el error de tipo I se incrementa el error de tipo II. La hipótesis subyacente para realizar el ajuste es la de la hipótesis nula universal, según la cual, el azar es la explicación primera para todo fenómeno. Esta hipótesis está en contradicción con las premisas básicas de la investigación empírica, según la cual la naturaleza obedece leyes regulares que pueden ser estudiadas a través de su observación. Es preferible no aplicar ajustes al realizar múltiples tests porque da lugar a menos errores de interpretación cuando los datos no son números aleatorios sino observaciones extraídas de fenómenos naturales. Además, los científicos no deberían rehuir la exploración de hipótesis que pueden resultar ser falsas dada la posibilidad de no advertir fenómenos potencialmente importantes.