constrOptim

El porqué de los mínimos cuadrados con restricciones

Avisé en mi entrada del otro día: no me preguntéis por qué (imponer restricciones en un problema de mínimos cuadrados). Pero cuanto más pienso sobre ello, menos claro lo tengo. ¿Por qué restricciones? Primero, el contexto. O el casi contexto. Porque no es exactamente así. Pero sí parecido. Supongamos que queremos predecir algo y construimos, p.e., 4 modelos. Se nos ocurre (y hay buenas razones para ello) combinar los predictores.

Mínimos cuadrados con restricciones

Sí, había restricciones. No me preguntéis por qué, pero los coeficientes tenían que ser positivos y sumar uno. Es decir, buscaba la combinación convexa de cuatro vectores que más se aproximase a y en alguna métrica razonable. Y lo resolví así: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 # prepare constrained optimization y <- dat.