Crps

CRPS

Hoy toca hablar del CRPS, o continuous ranked probability score, que es un tipo particular de scoring y que se usa para lo que se usan los scorings: comparar modelos y predicciones.

Imaginemos que alguien quiere predecir un determinado valor y que como no es un patán, tiene la gentileza de proporcionar la distribución del valor esperado (p.e., una $N(a, b)$). Resulta que el valor observado es $x_o$.

¿Cómo de buena es esa predicción? En principio, cuando más probable sea $x$ en términos de la función de probabilidad de la predicción, mejor será dicha predicción. Así que $p(x_o)$ —donde $p$ es la función de densidad de la predicción— podría ser un buen scoring. En la práctica se usa una versión de la anterior, $\log(p(x_o))$, pero viene a ser lo mismo.