Diferencias en Diferencias

Algunos apuntes sueltos sobre causalidad

Bajo cierto punto de vista, el estudio estadístico de la causalidad viene a consistir en la estimación de modelos incompletos. Un modelo completo es uno que contiene todas las ecuaciones / relaciones causales que afectan a un fenómeno. En uno incompleto, las variables y ecuaciones faltantes introducen sesgos de distinta naturaleza. Uno de los sitios donde mejor lo he visto contar es en Simulating confounders, colliders and mediators, de donde extraigo, además, el siguiente gráfico:

De A/B a DiD

Un test A/B consiste en (o aspira a) estimar (y tal vez promediar) las diferencias

predict(modelo_t, x) - predict(modelo_c, x)

donde modelo_t y modelo_c son modelos construidos en grupos tratados y no tratados de cierta manera.

Entra el tiempo.

Ahora ya no se trata de medir esas diferencias sino las diferencias entre los incrementos antes y después. Que se hace construyendo cuatro modelos para con ellos obtener

(predict(modelo_td, x) - predict(modelo_ta, x)) -