Efectos Heterogéneos

Cómo se calcula (vs cómo podría calcularse) la inflación

En resumidas cuentas, el INE calcula la inflación asi:

  1. A partir de la encuesta de presupuestos familiares, crea una cesta típica de productos.
  2. A partir de “datos de campo” evalúa la variación de los precios que forman parte de esa cesta de productos.

Comentarios:

  • Esa cesta de productos cuya evolución se sigue sería la que adquiriría una familia idealizada que no existe en absoluto. Por ejemplo, esa cesta puede sugerir que la familia idealizada consume un 0.1% de su presupuesto anual en comida de perros. Pero nadie consume un 0.1% de su presupuesto anual en eso: quienes tengan perro gastarán mucho más; los que, no, nada.

¿Por qué no funcionan las intervenciones buenistas?

El otro día, en mi entrada sobre la estadística en las ciencias blandengues, me cité el ensayo Nothing Scales del que extraje el parrafito

But trying to analyze this is very rare, which is a disaster for social science research. Good empirical social science almost always focuses on estimating a causal relationship: what is β in Y = α + βX + ϵ? But these relationships are all over the place: there is no underlying β to be estimated! Let’s ignore nonlinearity for a second, and say we are happy with the best linear approximation to the underlying function. The right answer here still potentially differs for every person, and at every point in time.* Your estimate is just some weighted average of a bunch of unit-specific βs, even if you avoid randomized experiments and run some other causal inference approach on the entire population.

Estadística en las ciencias blandas

Voy a comenzar con una simulación inofensiva,

set.seed(1)
n <- 10000
sigma <- .1
x <- runif(n)
# coeficientes:
indep <- -1
b_0 <- .5
# variable objetivo:
error <- rnorm(n, 0, sigma)
y_0 <- indep + x * b_0 + error
# modelo:
modelo_0 <- lm(y_0 ~ x)
summary(modelo_0)

que da como resultado

Call:
lm(formula = y_0 ~ x)

Residuals:
     Min       1Q   Median       3Q      Max
-0.42844 -0.06697 -0.00133  0.06640  0.37449

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.001951   0.001967  -509.5   <2e-16 ***
x            0.500706   0.003398   147.3   <2e-16 ***

Residual standard error: 0.0989 on 9998 degrees of freedom
Multiple R-squared:  0.6847,	Adjusted R-squared:  0.6846
F-statistic: 2.171e+04 on 1 and 9998 DF,  p-value: < 2.2e-16

Me he limitado a construir el típico conjunto de datos que cumple las condiciones de libro para poder aplicar la regresión lineal y he reconstruido los parámetros originales a través del resultado de esta: el término independiente (-1), la pendiente (.5), la desviación estándar del error (.1), etc.