Errores

Errores en modelos. Zillow. Control de alquileres.

I. Errores en modelos

A menudo he usado

plot(cars$speed, cars$dist)
abline(lm(dist ~ speed, data = cars), col = "red")

con el que se crea la requetemanida gráfica

útil para ilustrar aspectos relacionados con el ajuste de modelos. Hoy, toca de nuevo.

Salvo que uno haga cosas muy extravagantes, los errores de un modelo están tanto por arriba como por debajo de la predicción. De hecho, en una amplia clase de modelos $\sum_i e_i =0$ en entrenamiento y, usualmente, la suma de los errores no debe de quedar muy lejos de cero tampoco en validación (y en el mundo real). Uno puede casi siempre decir: unas veces me quedaré corto; otras largo y la ley de los grandes números me da ciertas garantías de que lo dado compensará lo servido en el largo plazo.

Breve introducción crítica a la llamada "predicción conforme"

Pensé que había hablado antes de la llamada predicción conforme. Lo habré soñado. Así que me pongo con ello.

Me retrotraigo a hace unos cuantos años, antes de la explosión del deep learning, a la época en la que aún tenía vida social. Uno de los pioneros de esas técnicas me contaba un día en un restaurante cómo funcionaban. Por ejemplo, para clasificar, creaban unas funciones muy complejas cuya salida era un vector (largo) de números positivos que sumaban uno. Cuando todos esos números eran casi cero y uno de ellos, el que correspondía a la etiqueta “conejo”, era casi uno, el modelo decía: “conejo”. Etc.

Diagramas causales hiperbásicos (III): mediadores

Esta es la tercera entrada de la serie sobre diagramas causales hiperbásicos, que, como la segunda, no se entenderá sin —y remito a— la primera que define el contexto, objetivo e hipótesis subyacentes de la serie completa. Además, sería conveniente haber leído la segunda.

Esta vez, el diagrama causal es una pequeña modificación del de la anterior:

Ahora, la variable $X$ influye sobre $Y$ por dos vías: directamente y a través de $Z$. Variables como $Z$, conocidas como mediadores son muy habituales. Uno podría pensar que, realmente, ninguna $X$ actúa directamente sobre ninguna $Y$ sino a través de una serie de mecanismos que involucran a variables intermedias $Z_1, \dots, Z_n$ que constituyen una cadena causal. Puede incluso que se desencadenen varias de estas cadenas causales que transmitan a $Y$ la potencia de $X$. Que hablemos de la influencia causal de $X$ sobre $Y$ es casi siempre una hipersimplificación de la realidad.

Diagramas causales hiperbásicos (II): ¿qué significa "controlar por" una variable?

Esta es la segunda entrada de la serie sobre diagramas causales hiperbásicos. No se entenderá sin —y remito a— la entrada anterior que define el contexto, objetivo e hipótesis subyacentes de la serie completa.

El diagrama causal objeto de esta entrada es apenas una arista más complejo que el de la anterior:

Ahora la variable $Z$ afecta tanto a $Y$ (como en la entrada anterior) como a $X$ (esta es la novedad). Es una situación muy común en el análisis de datos. Algunos ejemplos:

Sobre la sistemática infraestimación del error en las encuestas

Las encuestas que se publican suelen estar acompañadas de una ficha técnica en la que, entre otras cosas, se especifica el error muestral. El error muestral está relacionado con la posibilidad de que la muestra no represente fidedignamente la población de interés, que tenga un sesgo producto exclusivamente del azar. Es decir, ignora el resto de los posibles sesgos que tengan una causa distinta.

Pero aquellas que recaban opiniones, etc. de personas humanas suelen dar por hecho que los datos recogidos de los sujetos muestrales son ciertos. Hoy quiero mencionar dos evidencias de lo contrario. De las que se induce que el error muestral de las encuestas podría ser una mera cota inferior que poca idea nos da de cuál podría ser la cota más interesante: la superior.

Diagramas causales hiperbásicos (I): variables omitidas y sus consecuencias

Comienzo hoy una serie de cuatro entradas (¡creo!) sobre diagramas causales supersimples que involucran a tres variables aleatorias: $X$, $Y$ y $Z$. En todos los casos, estaré argumentaré alrededor de en las regresiones lineales Y ~ X e Y ~ X + Z porque nos permiten leer, interpretar y comparar rápida y familiarmente los resultados obtenidos. En particular, me interesará la estimación del efecto (causal, si se quiere) de $X$ sobre $Y$, identificable a través del coeficiente de $X$ en las regresiones. No obstante, quiero dejar claro que:

"Proxys": error y sesgo en modelos lineales

El otro día publiqué un minihilo en Twitter que terminaba con una encuesta. Proponía el siguiente problema:

  1. Quiero, abusando del lenguaje, estimar el efecto de $x$ sobre $y$ usando el modelo lineal clásico $y = a_0 + a_1 x + \epsilon_1$.
  2. Pero no puedo medir $x$ con precisión. Solo tengo una medida ruidosa/aproximada de $x$, $z = x + \eta$, donde $\eta$ es normal, independiente de $\epsilon_1$, etc.
  3. Uso el modelo $y = b_0 + b_1 z + \epsilon_2$.

La pregunta que planteé consistía en elegir entre las siguientes tres opciones:

Aún más sobre propagación de errores (y rv)

[Menos mal que se me ha ocurrido buscar en mi propio blog sobre el asunto y descubrir —no lo recordaba— que ya había tratado el asunto previamente en entradas como esta, esta o esta.]

El problema de la propagación de errores lo cuentan muy bien Iñaki Úcar y sus coautores aquí. Por resumirlo: tienes una cantidad, $latex X$ conocida solo aproximadamente en concreto, con cierto error e interesa conocer y acotar el error de una expresión $latex f(X)$.

Más sobre el "método delta": propagate

Por referencia y afán de completar dos entradas que hice hace un tiempo sobre el método delta, esta y esta, dejo constar mención al paquete propagate, que contiene métodos para la propagación de la incertidumbre.

Para desavisados: si $latex x \sim N(5,1)$ e $latex y \sim N(10,1)$, ¿cómo sería la distribución de $latex x/y$? Etc.

Sobre los peligros del "Tukey biweight"

Sigo con ajustes robustos. Y cosas que como matemático, me ponen muy nervioso.

Una de las maneras de hacer ajustes robustos es la de sustituir la función cuadrática por la biweight. Es decir, utilizar la función que aparece la derecha en

en lugar de la de la izquierda. O, dicho de otra manera, en lugar de tratar de minimizar

$$ \sum_i \rho(y_i - f_\alpha(x_i))$$

usando $latex \rho(x) = x^2$, que es la función que se representa a la izquierda y a la que estamos acostumbrados, usar la de la derecha. Que es la función biweight de Tukey.