Estadística Bayesiana

Sobre el modelo beta-binomial con "deriva"

Planteamiento del problema

El modelo beta-binomial es precisamente el que estudió el reverendo Bayes. Es tan viejo como la estadística bayesiana: tienes una moneda, la tiras repetidamente y vas afinando progresivamente la estimación de la probabilidad de cara asociada a tal moneda.

Una variante habitual del problema anterior ocurre cuando hay una deriva (uso deriva como traducción de shift) en la probabilidad de la cara de la moneda: puedes estar tratando de vender productos en Amazon y estimar el número de ventas por impresión; es tentador usar el modelo beta-binomial, pero hay un problema: ¿los datos de hace tres años, siguen siendo relevantes?; ¿habrán cambiado en tanto las probabilidades?; en tal caso, ¿qué se puede hacer?

Comparaciones vs efectos y cuatro asuntos más

Aquí se lee:

Preferimos el término “comparaciones” al de “efectos” en tanto que el primero es más general que el segundo. Una comparación es un efecto solo en aquellos casos en los que el modelo tiene una interpretación causal válida.

En Intrumental variable regression and machine learning se discute cómo aplicar la técnica de las variables instrumentales no con regresiones lineales sino con otro tipo de modelos más generales (y se ilustra con random forests).

El "perspectivismo" en el debate sobre la naturaleza, objetiva o subjetiva, de la probabilidad

How probabilities came to be objective and subjective es un artículo que se resume así:

Entre 1837 y 1842, al menos seis matemáticos y filósofos, escribiendo en francés, inglés y alemán, y trabajando independientemente unos de otros, introdujeron distinciones entre dos tipos de probabilidad. Aunque los fundamentos, contenidos e implicaciones de estas distinciones diferían significativamente de autor a autor, todos giraban en torno a una distinción filosófica entre “probabilidades objetivas” y “subjetivas” que había surgido alrededor de 1840. Fue esta nueva distinción filosófica la que permitió a los probabilistas revisionistas concebir la posibilidad de “probabilidades objetivas”, lo cual habría sido un oxímoron para los probabilistas clásicos como Jakob Bernoulli y Pierre Simon Laplace.

Los modelos bayesianos, ¿condenados a sobreajustar?

Por ese micromundo en el que muevo, circuló recientemente una polémica sobre si los métodos bayesianos sobreajustan necesaria e irremisiblemente. El desencadenante fue la publicación Bayes is guaranteed to overfit, for any model, any prior, and every data point en la que el autor sostiene que, efectivamente:

  • Tiene sentido hablar de sobreajuste en modelos bayesianos (a diferencia de lo que sostienen otros en tanto que como los modelos bayesianos no maximizan ninguna función objetivo, no ha lugar siquiera hablar de sobreajuste).
  • Y que, efectivamente, sobreajustan.

También reconoce, y eso hay que abonárselo, que otros métodos (MLE en particular) sobreajustan aún más.

Ajuste de modelos: Optimización vs generalización

He escrito esta entrada como una introducción a lo que se cuenta aquí, aquí y aquí sobre el asunto de la relación entre la optimización (como parte del proceso de ajuste de modelos) y la generalización (o su capacidad para aprender sobre el mundo y no solo sobre los datos de entrenamiento). En los enlaces, el lector encontrará planteadas una serie de cuestiones sobre cómo y por qué generalizan los (o cierto tipo de) modelos en lugar de, simplemente, no hacerlo.

El "teorema" sobre las sumas de lognormales no es solo falso sino que, además, es innecesario (en muchos casos)

I.

Hace un tiempo, reproduje el enunciado del siguiente teorema:

La suma de lognormales (independientes y con parámetros similares) es lognormal.

El teorema no es cierto. No puede serlo tanto por motivos teóricos como meramente empíricos. Es fácil

  1. tomar 3000 muestras de una lognormal con parámetros cualesquiera,
  2. sumarlos por tríos para obtener 1000 muestras $x_i$ de su suma,
  3. ajustar la mejor lognormal que se ajusta a ellos (pista: si se usa MV, los parámetros ajustados son la media y la desviación estándar de $\log x_i$),
  4. comparar las dos muestras (p.e., vía qqplots).

II.

Pero sí que es cierto que:

¿Cuántas iteraciones necesita mi MCMC?

Es el tema de este reciente artículo de Gelman. Cabe esperar que algunos se sientan decepcionados porque no tenga solo una página en la que se lea algo así como: usa cuatro cadenas de 4000 iteraciones, 1000 de ellas de warmup. Lo siento: son 26 páginas y sin recetas copy-paste.

Tampoco puedo añadir nada de sustancia a lo que ahí se cuenta. Me voy a limitar a subrayar una idea e ilustrarla con un caso con el que me enfrenté hace unos años.

Charla en la U. de Oviedo sobre sistemas de recomendación con el objetivo de ilustrar aspectos relevantes y frecuentemente olvidados de la estadística bayesiana

El lunes día 13 (de noviembre de 2023), a las 17:15, hablaré de sistemas de recomendación como excusa para ilustrar algunos aspectos relevantes y frecuentemente olvidados de la estadística bayesiana. Entiendo que aunque la charla esté dirigida a los estudiantes del grado de ciencia de datos de la Universidad de Oviedo, la asistencia tanto presencial como remota está abierta al público. Entiendo también que la charla se grabará y que quedará disponible.

Más sobre extensiones (bayesianas, pero no necesariamente) del t-test

En Improving Research Through Safer Learning from Data, Frank Harrell, junto con otros consejos muy provechosos para aquellos investigadores que tengan un compromiso más serio con la rectitud metodológica que con el desarrollo de su carrera profesional, menciona a modo de ejemplo una solución propuesta por Box y Tiao (en el tercer capítulo de esto) al problema del t-test en el caso de que no rija la hipótesis de normalidad. Más propiamente, en casos en los que se sospecha que la desviación con respecto a la normalidad lo es en términos de la curtosis (y no la asimetría).

De cómo la estadística bayesiana ha descompuesto la solución a un problema que la estadística clásica tenía plusquamsolucionado

I.

Voy a plantear el problema del día en el contexto más simple y familiar para la mayoría que se me ocurre: una ANOVA para comparar dos tratamientos. Se puede representar de la forma

$$y_i \sim \alpha + \beta_{T(i)} + \epsilon$$

donde $T(i)$ es el tratamiento, $A$ o $B$, que recibe el sujeto $i$. Parecería que el modelo estuviese sugiriendo determinar tres parámetros, $\alpha$, $\beta_A$ y $\beta_B$, correspondientes al efecto sin tratamiento y los efectos adicionales de los tratamientos $A$ y $B$. Sin embargo, si $\hat{\alpha}$, $\hat{\beta}_A$ y $\hat{\beta}_B$ es una solución, también lo es $\hat{\alpha} + \lambda$, $\hat{\beta}_A - \lambda$ y $\hat{\beta}_B - \lambda$ para cualquier $\lambda$. ¡No hay solución única (sino, más bien, una recta entera de soluciones)!

Coeficientes "no identificables": un ejemplo y sus consecuencias

Hoy voy a abundar sobre el modelo 3PL que ya traté el otro día. En particular voy a contrastar críticamente varios modelos alternativos sobre los mismos datos.

I.

El modelo que implementé (aquí) puede describirse así:

$$r_{ij} \sim \text{Bernoulli}(p_{ij})$$ $$p_{ij} = p(a_i, d_j, …)$$ $$a_i \sim N(0, 1)$$ $$d_j \sim N(0, 1)$$ $$\dots$$

donde

$$p = p(a, d, \delta, g) = g + \frac{1 - g}{1 + \exp(-\delta(a- d))}$$

y $a_i$ y $d_j$ son la habilidad del alumno $i$ y la dificultad de la pregunta $j$ respectivamente. Nótese además cómo en $f$ estas dos variables intervienen solo a través de su diferencia, $a - d$.

Una "app" para la selección de parámetros de prioris informativas

Un ejemplo de caso de uso: uno de los parámetros de tu modelo está relacionado con la duración de algo. El cliente, que tiene 20 años de experiencia en la cosa te dice: el tiempo está típicamente comprendido entre uno y siete días. Por lo tanto, decides introducir en tu modelo una priori informativa gamma que con una alta probabilidad asigne valores en el intervalo $[1, 7]$. Pero, ¿cuáles son sus parámetros?