Estadística

Gráficas de sesgo vs gráficas de calibración y algunos notas más sobre estadística

Si los datos en tratamiento tienen más varianza que los datos en control, ¿deberías sobrerrepresentar alguno de los grupos en el experimento? La respuesta es sí: deberías sobrerrepresentar el grupo de tratamiento.

El principio de la piraña: dado que el mundo observable es razonablemente predecible, una de dos:

  • o bien no hay demasiados factores grandes independientes operando causalmente,
  • o bien estos factores grandes interactúan negativamente entre sí de manera que se cancelan mutuamente.

Cita Jessica Hullman un parrafito de un artículo de Cornfield y Tukey (sí, ese Tukey) que traduzco aquí:

Estadística vs aprendizaje automático y algunos asuntos más

Cuando comparo valores reales contra estimados/predichos, tengo la costumbre de colocar los valores observados en el eje horizontal y las predicciones en el vertical. Así puedo ver si yerro por exceso o por defecto (con respecto a la línea, típicamente roja, $y = x$). Sin embargo, tanto en este artículo como en esta entrada de blog, se argumenta en favor de lo contrario.

Hay una diferencia sustancial entre el bayesianismo abstracto y el aplicado (o computacional): el primero siempre habla de aprendizaje secuencial y de encadenamiento de posterioris: la posteriori de un primer estudio con unos datos parciales se convierte automáticamente en la priori de uno posterior con un conjunto de datos adicional. En la versión práctica, solo es posible en ciertos casos concretos (p.e., cuando hay distribuciones conjugadas) pero no en general. En general uno obtiene una descripción de la posteriori en términos de una serie de muestras que no hay forma de utilizar después como priori. Sin embargo, pasan cosas como esta o esta

Más sobre la relación entre la dispersión de las probabilidades y el AUC en modelos bien calibrados

Esta entrada está relacionada —aunque no es estrictamente una continuación— de la que escribí hace una semana sobre el mismo asunto.

Se vuelve a partir de lo siguiente: un modelo de clasificación binaria bien calibrado. Eso significa que si el modelo predice $p$ para el sujeto $i$, entonces $Y_i \sim B(p)$.

Supongamos que tenemos una población dada, aplicamos el modelo y obtenemos una distribución $f(p)$ para las probabilidades predichas. Entonces, la distribución de:

Sobre la relación entre la dispersión de las probabilidades y el AUC en modelos bien calibrados

Supongamos que estamos construyendo un modelo de clasificación binaria. Supongamos que está bien calibrado, es decir, que cuando predice una probabilidad $p$ de éxito para un sujeto $i$, entonces es cierto que $Y_i \sim \text{Bernoulli(p)}$.

Por otro lado, pensemos en el AUC, que es muchas cosas, pero entre ellas,

$$ AUC=Pr(p_i >p_j | Y_i =1,Y_j =0),$$

es decir la probabilidad de que, tomando dos sujetos al azar, uno positivo, el $i$ y otro negativo, el $j$, $p_i > p_j$.

Isosemanas

Muchos fenómenos tienen una periodicidad intrínsecamente semanal (p.e., el tráfico). Eso puede motivar el uso la semana como unidad temporal de referencia en determinados análisis en lugar del mes o el día.

Existe gente que tal vez no esté al tanto de que existe un estándar ISO para definir y representar las semanas sin ambigüedad, el ISO 8601. Sus principales características son

  • Las isosemanas comienzan el lunes y terminan el domingo.
  • La primera isosemana del año es la que contiene el primer jueves del año.
  • Un año contiene típicamente 52 isosemanas, aunque algunos (entre ellos, 1903, 1908, 1914, 1920, 1925, 1931, 1936, 1942, 1948, 1953, 1959, 1964, 1970, 1976, 1981, 1987, 1992, 1998, 2004, 2009, 2015, 2020, 2026, 2032, 2037, 2043, 2048, 2054, 2060, 2065, 2071, 2076, 2082, 2088, 2093, 2099) contienen 53.
  • Las isosemanas se representan con el formato YYYY-Www (e.g., 2025-W10 para la décima semana de 2025)

Hoy en día no merece la pena que indique cómo calcular ni manipular isosemanas en los lenguajes de programación más usuales: casi cualquier LLM lo sabe y lo puede ayudar a uno a crear funciones como

¿Por qué seleccionar "el mejor" modelo?

Tiene Ripley, el gran Ripley, un artículo de hace 20 años titulado Selecting Amongst Large Classes of Models donde discute la cuestión —la del título de esta entrada— y dice:

Deberíamos preguntarnos por qué queremos seleccionar un modelo. Parece ser un error extendido que la selección de modelos trata de “seleccionar el mejor modelo”. Si buscamos un modelo explicativo, deberíamos tener presente que puede haber varios modelos explicativos (aproximadamente) igual de buenos: lo aprendí de David Cox cuando era un profesor novato en el Imperial College tras haber hecho muchas selecciones informales de modelos en problemas aplicados en los que me hubiera resultado útil haber podido presentar soluciones alternativas.

Adiós, Análisis y Decisión

Escribí en 2016:

Corría el año 2009 cuando comencé mi segunda aventura bloguera (nadie, yo incluido, quiere rememorar la primera) cuando Raúl Vaquerizo tuvo la caridad de aceptarme como colaborador en Análisis y Decisión.

En diciembre de aquel año escribí cómo utilizar R en una cosa que entonces comenzaba a sonar: la nube y, en concreto, el servicio EC2 de Amazon.

El resultado, probablemente totalmente desfasado, fue este.

Material de hemeroteca, alimento de melancolías.

Bajo hipótesis razonables, hacen falta 16 veces más observaciones para estimar una interacción que para estimar un efecto principal

Uno de los grandes temas de estas páginas es que el efecto principal de un tratamiento es un indicador demasiado burdo. Casi siempre queremos ver ese efecto propiamente desglosado: a unos sujetos les afecta más, a otro menos.

Para lograr ese objetivo, hay que estudiar cómo interactúa el efecto con otras variables (p.e., sexo). Desafortunadamente, cuanto mayor es el grado de desglose, más incertidumbre existe sobre las estimaciones; a la inversa, para lograr una mayor precisión en las estimaciones, hace falta incrementar el tamaño muestral. Pero, ¿cuánto?

Sobre el modelo beta-binomial con "deriva"

Planteamiento del problema

El modelo beta-binomial es precisamente el que estudió el reverendo Bayes. Es tan viejo como la estadística bayesiana: tienes una moneda, la tiras repetidamente y vas afinando progresivamente la estimación de la probabilidad de cara asociada a tal moneda.

Una variante habitual del problema anterior ocurre cuando hay una deriva (uso deriva como traducción de shift) en la probabilidad de la cara de la moneda: puedes estar tratando de vender productos en Amazon y estimar el número de ventas por impresión; es tentador usar el modelo beta-binomial, pero hay un problema: ¿los datos de hace tres años, siguen siendo relevantes?; ¿habrán cambiado en tanto las probabilidades?; en tal caso, ¿qué se puede hacer?

Seis asuntos sobre modelización estadística, incluyendo un problema que no parece del todo trivial

Sobre catboost

Todavía no he usado catboost en ningún proyecto serio, aunque tiene la pinta de ser la evolución más sofisticada de todos las variantes existentes del boosting. Ya escribí al respecto aquí y hoy traigo dos enlaces adicionales de José Luis Cañadas, un usuario muy entusiasta. Una sobre el tratamiento de las variables categóricas y otro sobre la regresión por cuantiles.

Ajuste bayesiano de un modelo con censura

Lo presenta el maestro Juan Orduz aquí que, como todos, no para mientes al hecho no totalmente evidente de que la verosimilitud de una densidad mixta (continua y discreta a un tiempo) es la que se postula que es (véase cómo arranca la sección Censored Gamma Model).