Estadística

No, tus datos no "tienen sobredispersión": es que el gato de Nelder se ha merendado la epsilon

El modelo de Poisson viene a decir que si y es una variable con valores 0, 1,… y x1,…, xn son variables explicativas tiene cierto sentido en algunos casos plantear un modelo de la forma

$$ y | x_i \sim \text{Pois}(\exp(a_0 + \sum_i a_i x_i) ),$$

Es decir , para cada combinación de las xi, el modelo proporciona el parámetro de una distribución de Poisson de la que y es una realización. Hay una incertidumbre (o un error irreductible) que reside en que de y solo conocemos la distribución.

Sobre el efecto medio

Traduzco de aquí:

En estadística y econometría se habla a menudo del efecto medio de un tratamiento. A menudo, he sido [Gelman] escéptico con respecto al efecto medio por la sencilla razón de que, si se trata de un efecto medio, se está reconociendo la posibilidad de variación; y si hay una variación importante (tanto como para hablar del efecto medio y no solo del efecto) es que nos preocupa tanto que deberíamos estudiarla directamente en lugar de reducirla a su promedio.

¿Qué queda de la "estadística robusta" clásica?

Estos días estoy muy atento a todo lo que tiene que ver con estadística robusta. El motivo es doble:

  • Estoy involucrado en un proyecto donde quieren ajustar ciertos modelos usando funciones de pérdida robustas (Huber, Tukey, etc.).
  • Hay una $latex 1 > p > 0$ de que me toque meter mano a MOMO y sus derivados para que lo del coronavirus no joda los contrafactuales de 2021 y sucesivos (¿bastará con eliminar unos cuantos meses de 2020?).

Así las cosas, ha aterrizado en mi tableta The Changing History of Robustness, donde, el autor, Stigler:

Sobremuestreando x (y no y)

Construyo unos datos (artificiales, para conocer la verdad):

n <- 10000
x1 <- rnorm(n)
x2 <- rnorm(n)
probs <- -2 + x1 + x2
probs <- 1 / (1 + exp(-probs))
y <- sapply(probs, function(p) rbinom(1, 1, p))
dat <- data.frame(y = y, x1 = x1, x2 = x2)

Construyo un modelo de clasificación (logístico, que hoy no hace falta inventar, aunque podría ser cualquier otro):

summary(glm(y ~ x1 + x2, data = dat, family = binomial))
#Call:
#glm(formula = y ~ x1 + x2, family = binomial, data = dat)
#
#Deviance Residuals:
#    Min       1Q   Median       3Q      Max
#-2.2547  -0.5967  -0.3632  -0.1753   3.3528
#
#Coefficients:
#            Estimate Std. Error z value Pr(>|z|)
#(Intercept) -2.05753    0.03812  -53.97   <2e-16 ***
#x1           1.01918    0.03386   30.10   <2e-16 ***
#x2           1.00629    0.03405   29.55   <2e-16 ***
#---
#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
#(Dispersion parameter for binomial family taken to be 1)
#
#    Null deviance: 9485.2  on 9999  degrees of freedom
#Residual deviance: 7373.4  on 9997  degrees of freedom
#AIC: 7379.4
#
#Number of Fisher Scoring iterations: 5

Correcto.

Sobre predicciones puntuales

Como tan a menudo se nos olvida, Taleb nos recuerda, breve y conciso, un par de cositas sobre las predicciones puntuales aquí. Además, casi todo lo que tiene que decir se resume en:

La regresión logística como el modelo más simple posible (que...)

Problema de regresión. Queremos $y = f(\mathbf{x})$. Lo más simple que podemos hacer: fiarlo todo a Taylor y escribir $ y = a_0 + \sum_i a_i x_i$.

Problema de clasificación. Lo más simple que podemos hacer, de nuevo: linealizar. Pero la expresión lineal tiene rango en $latex (-\infty, \infty)$. Solución, buscar la función $latex f$ más sencilla que se nos pueda ocurrir de $latex (-\infty, \infty)$ en $latex [0, 1]$. Entonces, $latex y = f(a_0 + \sum_i a_i x_i)$.

RuleFit

El otro día me sentí culpable porque me preguntaron sobre RuleFit y tuve que hacer un Simón (aka, me lo estudio para mañana). Y como mañana fue antier, lo que sigue.

Hay descripciones estándar de RuleFit (p.e., esta o la del artículo original) pero me voy a atrever con una original de mi propio cuño.

Comenzamos con lasso. Lasso está bien, pero tiene una limitación sustancial: se le escapan las iteracciones (vale, admito que lo anterior no es universalmente exacto, pero lo es casi y eso me vale). Entonces, la pregunta es: ¿cómo introducir interacciones en lasso?

Explicación de modelos

Este es el primer año en el que en mi curso de ciencia de datos (hasta ahora en el EAE; a partir del año que viene, vaya uno a saber si y dónde) introduzco una sección sobre explicación de modelos.

Hay quienes sostienen que, mejor que crear un modelo de caja negra y tratar luego de explicar las predicciones, es recomendable comenzar con un modelo directamente explicable (p.e., un GLM). Por mucha razón que traigan, vox clamantis in deserto: hay y seguirá habiendo modelos de caja negra por doquier.

53 (o, ¿cuál es la prior?)

En la documentación técnica del estudio ENE-COVID19 (recuérdese: INE + ISCIII) se describe un estudio de fiabilidad previo del test rápido (sección A1.2) que se anuncia así:

Según el fabricante, el test tiene una sensibilidad del 88% y 97% para determinar IgM e IgG respectivamente, y una especificidad de 100% frente a ambos isótopos. Para comprobar el comportamiento del test elegido, se han llevado a cabo dos estudios de fiabilidad.

Veamos en qué consisten.

Aleatoriedad hirsuta, aleatoriedad pochola

Contemplando y comparando

y

se me han venido a la mente los adjetivos hirsuto y pocholo para calificar las respectivas formas de aleatoriedad que representan. La primera es el resultado del habitual

n <- 200
x <- runif(n)
y <- runif(n)
plot(x, y, pch = 16)

mientras que la segunda exige el más sofisticado

library(randtoolbox)
s <- sobol(n, 2, scrambling = 3)
x <- s[,1]
y <- s[,2]
plot(x, y, pch = 16)

Se ve que Sobol quería rellenar más armoniosamente el espacio. Me temo que, al hablar de aleatoriedad, muchos de nosotros también (p.e., esto).