Estadística

Cómo no restar números fuzzy

Esta entrada viene motivada por varios asuntos relacionados que me han sucedido en los últimos tiempos. El primero es un colega que me preguntó sobre si el paro había subido o bajado comparando datos de un par de trimestres.

La respuesta prima facie es evidente: restas las tasas publicadas y ya. Sin embargo, las cosas son un poco más complicadas si se tiene en cuenta que la EPA tiene un error. Es decir, existen infinitas trayectorias posibles entre las tasas de paro reales (pero desconocidas) de los dos trimestres. En térmimos matemáticos, la variación de la tasa de paro es $latex X_1 - X_0$, la diferencia de (presuntamente) dos variables aleatorias normales, que es otra variable aleatoria normal con colas que se extienden a ambos lados del cero.

En recuerdo de Leo Breiman

Recomiendo leer esto. Es un artículo que repasa la labor de Leo Breiman, pionero en esa nueva forma de plantear el análisis de datos que acabó convirtiéndose en la minería de datos y de algunos de los algoritmos y métodos más comunes que conforman la caja de herramientas de quienes lo practican hoy en día. Entre ellos, los árboles de decisión y de regresión y los random forests.

Así comienza el artículo:

How many theoretical probabilists walk away from a tenured faculty position at a top university and set out to make their living as consultants? How many applied consultants get hired into senior faculty positions in first-rate research universities? How many professors with a fine reputation in their field, establish an equally fine reputation in a different field, after retirement? Leo Breiman did all of these things and more.

Más (y distinto) sobre los censos

A los pocos días de publicar Los censos huelen a naftalina (y son muy caros) pasó por mis manos una visión alternativa, 2020 vision: why a full census should be kept. Danny Dorling, un tipo que escribe cosas muy interesantes, entra al debate argumentando cómo los censos tradicionales y los basados en muestras y registros administrativos son, a lo más, complementarios y nunca sustitutos.

No sé si creer sus argumentos enteramente. Por ejemplo, cuando dice que [B]oth the 1991 and 2001 census revealed that our admin records were including a million people who were not actually here anymore. Porque es posible que los registros administrativos de hoy en día sean más de fiar que los de hace diez o veinte años (¿qué ordenadores había entonces?). Pero tiene razón, creo, al insistir en un punto que ya había mencionado yo en este vídeo: que en censos y encuestas se pierde tiempo, espacio y dinero preguntando de nuevo a la gente cosas que la administración ya conoce sobradamente de ellos. Debería, más bien, aprovechar la ocasión para obtener información adicional, anteriormente desconocida y pertinente. ¿No os parece?

Curso de estadística y R de Hastie y Tibshirani

Los profesores Hastie y Tibshirani, coautores de Elements of Statistical Learning, de muchas técnicas predictivas y, todo hay que decirlo, ídolos intelectuales míos, organizan un MOOC gratuito, Statistical Learning entre el 21 de enero y el 22 de marzo.

Si estás leyendo esto (es decir, si has aterrizado en mi bitácora), te interesa. Si no te apuntas, te aviso, te arrepentirás.

Dicho lo cual, yo estaré ahí. Y se cuenta que podrían organizarse grupos locales de participantes —p.e., en Madrid— para resolver dudas y problemas.

Error de tipo I, error de tipo II

Aquí está la noticia sobre el resultado de un error de tipo I: Danone takes legal action over milk scare.

Este otro, sobre un error de tipo II: Wave a banknote at a pundit and he’ll predict anything.

Siempre me ha llamado la atención el segundo caso: ¿tienen realmente responsabilidades penales los geólogos? He leído algunos artículos al respecto y nunca he visto el caso planteado de la manera en que voy a hacerlo aquí.

Cómo apostar si tienes que

Hace unos días recibí esto,

que es la rentabilidad de carteras de inversión (sospecho que no necesariamente reales) de usuarios de cierto portal que compiten por ver quién tiene más ojo en bolsa.

¿No os llama la atención esa rentabilidad >600%? ¿Cómo se puede alcanzar? ¿Es ese señor —a quien no conozco— un hacha de las inversiones?

Dos ideas me vienen a la cabeza. Una es esta que, pienso, no aplica. Y no lo hace porque, en particular, y como ya escribí, la apuesta de Kelly maximiza la mediana de las ganancias, pero ignora su varianza. Que, por lo que veremos luego, es el quid de la cuestión.

Los censos huelen a naftalina (y son muy caros)

Los censos huelen a naftalina. Eso de ir contando exhaustivamente cabezas, críos, cabras y cabañas ya lo hacía el rey David en su época.

Tampoco son operaciones no pequeñas. El último censo chino movilizó a seis millones de encuestadores y el de EE.UU. costó casi como el AVE a Valencia.

Coste (absoluto y relativo) de los últimos censos de diversos países europeos.

Sin embargo, eso de contar sin excepciones es un ejercicio de fuerza bruta propio de la oscura época pre-estadística. El progreso ha traído consigo dos cosas —buena la una, regular la otra—, que permiten replantear enteramente los censos.

¿Cuántos peces hay en un lago?

Quien haya estudiado estadística o probabilidad en algún tipo de institución que ofrece educación reglada se habrá topado con el problema de estimar el número de peces de un lago.

Esencialmente, lo que puede hacerse (dado que es imposible realizar un censo completo) es lo siguiente:

  • Pescar cierto número de peces, p1, marcarlos y devolverlos al lago.
  • Pescar cierto número de peces, p2, y contar cuántos de ellos fueron marcados el día anterior, n.
  • Estimar el número de peces como p1 * p2 / n (dado que la proporción de peces marcados en el lago, p1 / x debiera ser similar a la de pescados el segundo día, n / p2).

Con R puede hacerse una estimación (incluso del error), así:

La red Asia

La red Asia es esto:

Es decir, una red bayesiana. Una red bayesiana clásica sobre la que los interesados podrán saber más leyendo lo que Lauritzen y Spiegelhalter dejaron escrito sobre ella en 1988.

Pero la idea básica es la siguiente:

  • Los nodos superiores (visita a Asia, fumador) son variables observables sobre el comportamiento de unos pacientes.
  • Los nodos inferiores (rayos X, disnea) son variables también observables, síntomas de esos pacientes.
  • Los nodos centrales, los más importantes, no son observables: son diversas enfermedades que pudieran estar padeciendo los individuos en cuestión.

La pregunta que ayuda a resolver esta red bayesiana es la siguiente: conocidas (¡o no!) las variables observadas, ¿cuál es la probabilidad de que un paciente dado padezca alguna de las enfermedades (tuberculosis, bronquitis o cáncer de pulmón) correspondientes a los nodos centrales?

Statistics Online Computational Resource

Sigo sin estar fino para hacer entradas interesantes. Así que de nuevo me voy a limitar a ejercer de divulgador de lo ajeno. Y hoy le corresponde el turno al Statistics Online Computational Resource, un portal nacido con el objetivo de fomentar el conocimiento de la estadística y la probabilidad en línea.

Podría abundar sobre los recursos disponibles en SOCR, pero prefiero ahorrar mi tiempo y el de mis lectores invitándolos directamente a visitarlo y comprobarlo por sí mismos.