Gbm

El discreto encanto de los árboles olvidadizos

I.

A mediados de los ochenta, hubo un momento fundacional en la historia del aprendizaje automático: la aparición de los árboles de decisión. El artículo de Breiman sobre las dos culturas puede entenderse así: existe —o existía en esa época— la cultura de los que usan métodos estadísticos tradicionales y la de los que usan árboles de todo tipo.

Herramientas de minería de datos de entonces, tales como las que vendían SAS o IBM, no encerraban debajo del capó otra cosa —u otra cosa novedosa— que árboles de decisión propietarios. Por todo lo anterior había mucho interés en conseguir mejores árboles, árboles que permitiesen crear mejores modelos —en el sentido, claro está, de cometer errores pequeños—.

GBM (III): Más allá de las pérdidas cuadráticas

Liberados del estrecho ámbito de nuestra original mentira sugerente gracias a la relación que descubrimos entre residuos y gradientes cuando las pérdidas son cuadráticas podemos adentrarnos en ámbitos más extensos.

Lo que discutimos del gradiente tiene una interpretación fácilmente inteligible en el caso de pérdidas cuadráticas. Pero ni la pérdida de interpretabilidad nos impide extender el razonamiento de la entrada anterior a funciones de pérdida distintas de la cuadrática siempre que podamos calcular un gradiente.

GBM (II): Minización de funciones, pérdidas cuadráticas, residuos y gradientes

Para minimizar una función $latex \phi(x)$ es habitual utilizar un procedimiento iterativo: a partir de un punto inicial $latex x_0$ se salta a $latex x_1 = x_0 - \lambda \nabla \phi(x_0)$ (donde $latex \lambda$ es un número pequeño predefinido de antemano), y de ahí, sucesivamente, a

$$ x_n = x_{n-1} - \lambda \nabla \phi(x_{n-1}).$$

Porque, típicamente, como cuando uno está en el monte y da un paso corto en la dirección opuesta a la de máxima pendiente, sucede que

GBM (I): Una mentira sugerente

Hace un tiempo resumí los GBMs (Gradient Boosting Machines) en una línea. Hoy comienzo una serie de varias entradas para que nadie tenga excusa de no saber de qué va la cosa. Arranco con una mentira sugerente. Porque lo que voy a contar no es del todo cierto, pero motiva lo que vendrá después.

Consideremos un conjunto de datos medio famoso: el de los precios de los alquileres en Múchich. Comencemos con un modelo sencillo, una regresión lineal que relacione el precio del alquiler con los metros cuadrados, i.e.,

GBM sintetizado en una línea

Es

$$ \sum_i \Phi(y_i, f_1(x_i)) > \sum_i \Phi(y_i, f_1(x_i) - \lambda \nabla \Phi(y_i, f_1(x_i)) \sim$$ $$ \sim \sum_i \Phi(y_i, f_1(x_i) - \lambda f_2(x_i))$$

Por supuesto, el lector se preguntará muchas cosas, entre las que destaco:

  • ¿Qué representa cada uno de los elementos que aparecen en la línea anterior?
  • ¿Qué parte de ella es solo casi siempre cierta?
  • ¿Qué tiene todo eso que ver con GBM?

Experimentos con el paquete gbm

No conocía el paquete gbm. Pero como ahora ando rodeado de data scientists que no son estadísticos…

Bueno, la cuestión es que había que ajustar un modelo para el que yo habría hecho algo parecido a

dat <- read.csv("http://www.ats.ucla.edu/stat/data/poisson_sim.csv")
summary(m.glm <- glm(num_awards ~ prog + math, family = "poisson", data = dat))
# Call:
#   glm(formula = num_awards ~ prog + math, family = "poisson", data = dat)
#
# Deviance Residuals:
#   Min       1Q   Median       3Q      Max
# -2.1840  -0.9003  -0.5891   0.3948   2.9539
#
# Coefficients:
#   Estimate Std. Error z value Pr(>|z|)
# (Intercept) -5.578057   0.676823  -8.242   <2e-16 ***
#   prog         0.123273   0.163261   0.755     0.45
# math         0.086121   0.009586   8.984   <2e-16 ***
#   ---
#   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# (Dispersion parameter for poisson family taken to be 1)
#
# Null deviance: 287.67  on 199  degrees of freedom
# Residual deviance: 203.45  on 197  degrees of freedom
# AIC: 385.51
#
# Number of Fisher Scoring iterations: 6