Gradiente

Factorización matricial con nulos

In illo tempore me llamaba mucho la atención encontrar métodos de ciencia de datos basados en factorización de matrices cuando la matriz a factorizar tenía nulos. Ocurre, por ejemplo, en sistemas de recomendación (cuando un usuario no ha visto o no nos ha dicho si le gusta determinada película).

Y claro, con un nulo en la cosa, te comes los apuntes de álgebra lineal con papas.

¿Cómo se hace? Si buscas $latex U$ y $latex V$ tales que $latex Y = UV^\prime$:

Optimización: dos escuelas y una pregunta

Dependiendo de con quién hables, la optimización (de funciones) es un problema fácil o difícil.

Si hablas con matemáticos y gente de la escuela de optim y derivados (BFGS y todas esas cosas), te contarán una historia de terror.

Si hablas con otro tipo de gente, la de los que opinan que el gradiente es un tobogán que te conduce amenamente al óptimo, el de la optimización no alcanza siquiera talla de problema.