Heurísticas

k-means "2.0" y cuatro asuntos más

  1. Existe un blog muy raro y entretenido, Weierd Data Science, en el que hace años publicaron una serie de artículos realizando un análisis estadístico no enteramente trivial del manuscrito Voynich. Esta es la última entrega de la serie de cuatro entradas, que ilustra y entretiene más y mejor que esas actividades que alguien ha decidido que formen parte del canon cultural.
  2. Son estos tiempos de llave inglesa: una única herramienta para apretar y aflojar cualquier tipo de tuerca. Me refiero, obviamente, al deep learning y las redes neuronales. Sin embargo, fuera del foco mediático, la gente sigue construyendo y ajustando modelos con formas funcionales fuertes, como el modelo de Wiener en sicología.
  3. k-means 2.0
  4. He debido de comentar y enlazar el artículo Decision-making under uncertainty: heuristics vs models una docena de veces. Pero siempre encuentro un motivo nuevo para volver a él.
  5. En The likelihood principle in model check and model evaluation, se discute un asunto que no llega, pienso, a la categoría de problema: dos modelos generativos distintos pueden compartir verosimilitud.