Intervalo De Predicción

Aún más sobre la presunta sobredispersión en modelos de Poisson

[Esta entrada continúa el ciclo al que he dedicado esta y esta otra entradas durante los últimos días.]

Las dos entradas anteriores de la serie se resumen en que:

  • el modelo de Poisson no recoge todas las fuentes de error que pueden existir en los datos y que
  • las soluciones al uso (como, p.e., usar modelos quasi-Poisson) son puros remiendos.

Si el error en el modelo de Poisson entra (también) en el término lineal, podemos modelar ese error explícitamente. Podría haber implementado la solución INLA o Stan del problema, pero me conformaré con la lme4. Primero, generaré los datos (igual que en las entradas anteriores) y añadiré una variable categórica que identifique cada registro:

Intervalos de confianza, intervalos de predicción

Contexto:

modelo <- lm(dist ~ speed, data = cars)

Intervalos de confianza:

head(predict(modelo, interval = "confidence"))
#        fit        lwr       upr
#1 -1.849460 -12.329543  8.630624
#2 -1.849460 -12.329543  8.630624
#3  9.947766   1.678977 18.216556
#4  9.947766   1.678977 18.216556
#5 13.880175   6.307527 21.452823
#6 17.812584  10.905120 24.720047

Intervalos de predicción:

head(predict(modelo, interval = "prediction"))
#        fit       lwr      upr
#1 -1.849460 -34.49984 30.80092
#2 -1.849460 -34.49984 30.80092
#3  9.947766 -22.06142 41.95696
#4  9.947766 -22.06142 41.95696
#5 13.880175 -17.95629 45.71664
#6 17.812584 -13.87225 49.49741

Creo que la diferencia (y el significado) es claro. Para todos los demás, esto.